請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊性芳(Hsin-Fang Yang-Yen) | |
| dc.contributor.author | Kuang-Hung Lin | en |
| dc.contributor.author | 林冠宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:13:10Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-14 | |
| dc.identifier.citation | References
1. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nature structural biology 2001, 8(8): 701-704. 2. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM. Molecular identification of an IgE-dependent histamine-releasing factor. Science 1995, 269(5224): 688-690. 3. Kashiwakura JC, Ando T, Matsumoto K, Kimura M, Kitaura J, Matho MH, et al. Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy. The Journal of clinical investigation 2012, 122(1): 218-228. 4. Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, et al. Translationally controlled tumor protein is a target of tumor reversion. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(43): 15364-15369. 5. Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A. TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends in cell biology 2013, 23(1): 37-46. 6. Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, et al. TCTP protects from apoptotic cell death by antagonizing bax function. Cell death and differentiation 2008, 15(8): 1211-1220. 7. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Molecular and cellular biology 2005, 25(8): 3117-3126. 8. Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, et al. An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 2005, 24(30): 4778-4788. 9. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, et al. Reciprocal repression between P53 and TCTP. Nature medicine 2012, 18(1): 91-99. 10. Zhang J, de Toledo SM, Pandey BN, Guo G, Pain D, Li H, et al. Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(16): E926-933. 11. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007, 445(7129): 785-788. 12. Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, Stocker H, et al. Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS letters 2008, 582(20): 3005-3010. 13. Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, et al. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. The Journal of biological chemistry 2008, 283(45): 30482-30492. 14. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, et al. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Molecular biology of the cell 2007, 18(7): 2525-2532. 15. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012, 149(2): 274-293. 16. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes & development 1999, 13(11): 1422-1437. 17. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010, 33(3): 301-311. 18. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology 2009, 10(5): 307-318. 19. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annual review of immunology 2009, 27: 591-619. 20. Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A. Functional subsets of memory T cells identified by CCR7 expression. Current topics in microbiology and immunology 2000, 251: 167-171. 21. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annual review of immunology 2010, 28: 445-489. 22. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annual review of immunology 2012, 30: 531-564. 23. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009, 30(6): 832-844. 24. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature immunology 2011, 12(4): 295-303. 25. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32(6): 743-753. 26. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007, 27(2): 173-178. 27. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324(5930): 1029-1033. 28. Hidayat S, Yoshino K, Tokunaga C, Hara K, Matsuo M, Yonezawa K. Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochemical and biophysical research communications 2003, 301(2): 417-423. 29. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. Journal of immunology 2009, 183(10): 6095-6101. 30. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor perspectives in biology 2012, 4(10). 31. Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, et al. mRNA helicases: the tacticians of translational control. Nature reviews Molecular cell biology 2011, 12(4): 235-245. 32. Wu PS, Yang CY, Yen JJ, Chou CH, Chen SH, Wang CK, et al. Critical roles of translationally controlled tumor protein in the homeostasis and TCR-mediated proliferation of peripheral T cells. Journal of immunology 2009, 183(4): 2373-2381. 33. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 2001, 15(5): 763-774. 34. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(16): 7455-7460. 35. Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nature immunology 2013, 14(4): 364-371. 36. Kim HP, Kelly J, Leonard WJ. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 2001, 15(1): 159-172. 37. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011, 35(6): 871-882. 38. Gorbachev AV, Fairchild RL. Induction and regulation of T-cell priming for contact hypersensitivity. Critical reviews in immunology 2001, 21(5): 451-472. 39. Kehry MR, Hodgkin PD. Helper T cells: delivery of cell contact and lymphokine-dependent signals to B cells. Seminars in immunology 1993, 5(6): 393-400. 40. Bossie A, Vitetta ES. IFN-gamma enhances secretion of IgG2a from IgG2a-committed LPS-stimulated murine B cells: implications for the role of IFN-gamma in class switching. Cellular immunology 1991, 135(1): 95-104. 41. Lai MC, Lee YH, Tarn WY. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Molecular biology of the cell 2008, 19(9): 3847-3858. 42. Soto-Rifo R, Rubilar PS, Limousin T, de Breyne S, Decimo D, Ohlmann T. DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. The EMBO journal 2012, 31(18): 3745-3756. 43. Geissler R, Golbik RP, Behrens SE. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic acids research 2012, 40(11): 4998-5011. 44. Shih JW, Tsai TY, Chao CH, Wu Lee YH. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 2008, 27(5): 700-714. 45. Ruggero D, Sonenberg N. The Akt of translational control. Oncogene 2005, 24(50): 7426-7434. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58380 | - |
| dc.description.abstract | 中文摘要
TCTP在許多真核生物中具有高度保守性,生化研究顯示TCTP是一個鈣結合蛋白且會和很多調控細胞生長或死亡的蛋白交互作用。因為TCTP在T細胞活化會大量表現,所以我們在此篇論文中探討TCTP在T細胞活化時扮演的功能。我們證實了缺乏TCTP時,T細胞活化造成的細胞分裂會嚴重的延遲。更深入的研究發現至少在T細胞裡面,老鼠的TCTP不像果蠅的TCTP一樣是Rheb的GTP交換因子。除此之外,我們發現TCTP和一些轉譯起始複合體內的組成物有物理上的結合,而且在T細胞活化過程中調控很多蛋白的轉譯。有趣的是,缺少TCTP降低了Th1和Th2細胞的分化卻不影響Th17的分化,且反而增加Treg的分化。跟在體外的結果一致, T細胞剔除掉TCTP的老鼠其體內的T細胞反應明顯減弱。綜上所述,我們的研究顯示TCTP調控T細胞的活化很可能是調控了一部分T細胞活化時所需的蛋白的轉譯。 | zh_TW |
| dc.description.abstract | Abstract
Translationally controlled tumour protein (TCTP) is highly conserved among many eukaryotic organisms. Biochemical studies indicate that TCTP is a calcium binding protein that can interact with many proteins implicated in cell growth and death controls. In this study, we investigated the functions of TCTP during T cell activation, since TCTP is markedly up-regulated upon TCR stimulation. We demonstrated that TCTP deficiency significantly delayed the proliferation of T cells following TCR stimulation. Further analysis indicated that, unlike fly TCTP, mouse TCTP did not appear to function as a guanine nucleotide exchange factor (GEF) for Rheb, at least not in T cells. Furthermore, we found that TCTP interacted with some components of the translation initiation complex and regulated translation of a large subset of proteins during T cell activation. Interestingly, deletion of TCTP selectively impaired T cell differentiation into Th1 and Th2 subsets, while exerting no or better effects on Th17 and Treg differentiation, respectively. Consistent with the in vitro differentiation results, mutant mice with specific deletion of TCTP in T cells manifested attenuated immune responses in vivo. All together, our results suggest that TCTP regulates T cell activation and functions likely via modulating protein translation of a subset of proteins required for this process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:13:10Z (GMT). No. of bitstreams: 1 ntu-103-R00448002-1.pdf: 7814362 bytes, checksum: 5ed308623885a97fb7c29b1454aedf81 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Table of content
List of Figures……………………………………………………………………….ii List of Tables……………………………………………………………………..…iii 中文摘要……..………………………………………………………………………iv Abstract………………………………………………………………………………v 1. Introduction……………………………………………………………………...1 1-1 Translationally controlled tumor protein……………………………………...1 1-2 Roles of mammalian target of rapamycin complex (mTORC) in T cells……..2 1-3 Translation initiation…………………………………………………………..6 2. Materials and Methods…………………………………………………………..9 2-1 Mice………………………………………………………………………...…9 2-2 Flow cytometry analysis……………………………………………………....9 2-3 Immunoblotting………………….……..…………………………………….10 2-4 Real-Time quantitative PCR…………………………………………………11 2-5 Glycolytic flux……………………………………………………………….12 2-6 Immunoprecipitation…………………………………………………………12 2-7 S35-Methionine pulse-labeling assay……………….………………………...13 2-8 Retroviral transduction……………………………………………………….14 2-9 In vitro T cell differentiation………………………………………………....14 2-10 Intracellular staining……………………………………………………...15 2-11 Contact hypersensitive assay…………………………………………..…15 2-12 Immunization and ELISA……………………………………………...…16 2-13 Statistical analysis………………………………………………………...17 3. Results…………………………………………………………………………...18 3-1 TCTP-deficient T cells manifest delayed TCR-mediated proliferation……...18 3-2 TCTP does not regulate mTORC1 activity in activated T cells……………...18 3-3 TCTP is involved in the up-regulated expression of Akt and c-Myc in activated T cells…………………………………………………………………..19 3-4 Overexpression of c-Myc is not sufficient to rescue delayed proliferation of TCTP-KO cells following TCR activation……………………………………….21 3-5 TCTP interacts with some components of the translation machinery and regulates translation of a large subset of proteins during T cell activation………21 3-6 Deletion of TCTP selectively impaired T cell differentiation into the Th1 and Th2, but not the Th17 subsets of helper T cells………………………………….22 3-7 Deletion of TCTP enhanced T cell differentiation into the Foxp3+ regulatory T cells………………………………………………………………………………23 3-8 TCTP-T-KO mice manifested impaired Th1 and Th2 responses in vivo…….23 3-9 TCTP plays a role in T cell-dependent antibody production………………...24 4. Discussion…………………………………………………………..…………….26 5. Figures…………………………………………………………………………….29 6. Table.………………………………………………………………………………53 7. References…………...……………………………………………………………54 | |
| dc.language.iso | en | |
| dc.subject | TCTP | zh_TW |
| dc.subject | T細胞 | zh_TW |
| dc.subject | T cell | en |
| dc.subject | TCTP | en |
| dc.title | 分析TCTP在T細胞中之功能 | zh_TW |
| dc.title | Functional analysis of TCTP in T cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),黃慶裕(Ching-Yu Huang) | |
| dc.subject.keyword | TCTP,T細胞, | zh_TW |
| dc.subject.keyword | TCTP,T cell, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
