請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58369完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Hsuan-Hao Liu | en |
| dc.contributor.author | 劉暄浩 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:12:48Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-14 | |
| dc.identifier.citation | Artigas, D., and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett., vol. 94, pp. 013901-1–013901-4, 2005.
Avrutsky, I., “Guided modes in a uniaxial multilayer,” J. Opt. Soc. Am. A, vol. 20, pp. 548–556, 2003. Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. Boroujeni, M. A., and M. Shahabadi, “Modal analysis of multilayer planar lossy anisotropic optical waveguides,” J. Opt. A: Pure Appl. Opt., vol. 8, pp. 856–863, 2006. Burnett, D. S., Finite Element Analysis – From Concepts to Applications, 2nd ed. Reading, Massachusetts, USA: Addison-Wesley, 1987. Burns, W. K., and J. Warnert, “Mode dispersion in uniaxial optical waveguides,” J. Opt. Soc. Am., vol. 64, pp. 441–446, 1974. Burns, W. K., S. K. Sheem, and A. F. Milton, “Approximate calculation of leaky-mode loss coefficients for Ti-diffused LiNbO3 waveguides,” IEEE J. Quantum Electron., vol. QE-15, pp. 1282–1289, 1979. Ctyroky, J., and M. Cada, “Guided and semileaky modes in anisotropic optical waveguides of the LiNbO3 Type,” Opt. Commun., vol. 27, pp. 353–357, 1978. Ctyroky, J., and M. Cada, “Generalized WKB method for the analysis of light 98 propagation in inhomogeneous anisotropic optical waveguides,” IEEE J. Quantum Electron., vol. 17, pp. 1064–1070, 1981. D’yakonov, M. I., “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP, vol. 67, pp. 714–716, 1988. Hu, J., and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon., vol. 1, pp. 58–106, 2009. Jin, J. M., The Finite Element Method in Electromagnetics. New York, USA: John Wiley & Sons, 1993. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd ed. New York, USA: Wiley-IEEE Press, 2002. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation. New York, USA: John Wiley & Sons, 2001. Kekatpure, R. D., A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Exp., vol. 17, pp. 24112–24129, 2009. Kharusi, M. S., “Uniaxial and biaxial anisotropy in thin-film optical waveguides,” J. Opt. Soc. Am., vol. 64, pp. 27–35, 1974. Knoesen, A., T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar wave-guides,” J. Lightwave Technol., vol. 6, pp. 1083–1104, 1988. Kolosovskii, E. A., D. V. Petrov, A. V. Tsarev, and I. B. Iakovin, “An exact method for analysing light propagation in anisotropic inhomogeneous optical waveguides,” Opt. Commun., vol. 43, pp. 21–25, 1982. Koshiba, M., and M. Suzuki, “Numerical-analysis of planar arbitrarily anisotropic diffused optical-waveguides using finite-element method,” Electron. Lett., vol. 18, pp. 579–581, 1982. Koshiba, M., H. Kumagami, and M. Suzuki, “Finite-element solution of planar arbitrarily anisotropic diffused optical wave-guides,” J. Lightwave Technol., vol. 3, pp. 773–778, 1985. Koshiba, M., Optical Waveguide Theory by the Finite Element Method. Tokyo/Dordrecht, Japan: KTK Scientific/Kluwer, 1992. Koshiba, M., H. Kumagami, and M. Suzuki, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 405–413, 2001. Koshiba, M., H. Kumagami, and M. Suzuki, “Correction to Finite-element solution of planar arbitrarily anisotropic diffused optical waveguides,” J. Lightwave Technol., vol. 4, pp. 100–100, 1986. Krowne, C. M., “Theoretical considerations for finding anisotropic permittivity in layered ferroelectric/ferromagnetic structures from full-wave electromagnetic simulations,” Microwave Opt. Technol. Lett., vol. 28, pp. 63–69, 2001. Lai, C. H., and H. C. Chang, “Effect of perfectly matched layer reflection coefficient on modal analysis of leaky waveguide modes,” Opt. Exp., vol. 19, pp. 562–569, 2011. Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. Lehoucq, R. B., and D. C. Sorensen, “Deflation techniques for an implicitly restarted Arnoldi iteration,” SIAM J. Matrix Anal. Appl., vol. 17, pp. 789–821, 1996. Lehoucq, R. B., D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Philadelphia, USA: SIAM, 1998. Li, R., C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett., vol. 92, pp. 141115-1–141115-3, 2008. Liscidini, M., and J. E. Sipe, “Quasiguided surface plasmon excitations in anisotropic materials,” Phys. Rev. B, vol. 81, pp. 115335-1–115335-9, 2010. Lu, M., and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Am. A, vol. 10, pp. 246–261, 1993. Maier, S. A., Plasmonics: Fundamentals and Applications. New York, USA: Springer, 2007. Maldonado, T. A., and T. K. Gaylord, “Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol., vol. 14, pp. 486–499, 1996. Marcuse, D., “Electrooptic coupling between TE and TM modes in anisotropic slabs,” IEEE J. Quantum Electron., vol. 11, pp. 759–767, 1975. Marcuse, D., “Modes of a symmetric slab optical waveguide in birefringent media–Part 1: Optical axis not in plane of slab,” IEEE J. Quantum Electron., vol. 14, pp. 736–741, 1978. Marcuse, D., and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media, Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron., vol. 15, pp. 92–101, 1979. Nagaraj and A. A. Krokhin, “Long-range surface plasmons in dielectric-metal-dielectric structure with highly anisotropic substrates,” Phys. Rev. B, vol. 81, pp.085426-1–085426-9, 2010. Palik, E. D., Handbook of Optical Constants of Solids. New York, USA: Academic Press, 1998, vol. I, p. 356. Polo Jr., J. A., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev., vol. 5, pp. 234–246, 2011. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York, USA: Springer-Verlag, 1988. Russo, D. P. G., and J. H. Harris, “Wave propagation in anisotropic thin-film optical waveguides,” J. Opt. Soc. Am., vol. 63, pp. 138–145, 1973. Satomura, Y., M. Matsuhara, and N. Kumagai, “Analysis of electromagnetic-wave modes in anisotropic slab waveguide,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 86–92, 1974. Schmidt, R. V., and H. Kogelnik, “Electro-optically switched coupler with stepped Delta _ reversal using Ti-diffused LiNbO3 waveguides,” App. Phys. Lett., vol. 28, pp. 503–506, 1976. Selleri, S., L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron., vol. 33, pp. 359–371, 2001. Sheem, S. K., W. K. Burns, and A. F. Milton, “Leaky mode propagation in Ti-diffused LiNbO3, and LiTaO3, waveguides,” Opt. Lett., vol. 3, pp. 76–78, 1978. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “D’yakonov surface waves: a review,” Electromagnetics, vol. 28, pp. 126–145, 2008. Texixeira, F. L., and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 223–225, 1998. Torner, L., F. Canal, and J. Hernandez-Marco, “Leaky modes in multilayer uniaxial optical waveguides,“ Appl. Opt., vol. 29, pp. 2805–2814, 1990. Torner, L., J. Recolons, and J. P. Torres, “Guided-to-leaky mode transition in uniaxial optical slab waveguides,” J. Lightwave Technol., vol. 11, pp. 1592–1600, 1993. Tsuji, Y., and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol., vol. 18, pp. 618–623, 2000. Yakovle, A. B., G.W. Hanson, and R. L. Byer, “Fundamental modal phenomena on isotropic and anisotropic planar slab dielectric waveguides,” IEEE Trans. Antennas Propagat., vol. 51, pp. 888–897, 2003. Yamamoto, S., Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys., vol. 43, pp. 5090–5097, 1972. Yamamoto, S. and Y. Okamoto, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to directintensity modulators,” J. Appl. Phys., vol. 50, pp. 2555–2564, 1979. Yamanouchi, K., T. Kamiya, and K. Shibayama, “New leaky surface waves in anisotropic metal-diffused optical waveguides,” IEEE Trans. Microwave Theory Tech., vol MTT-26, pp. 298–305, 1978. Yeh, P., and C. Gu, Optics of Liquid Crystal Displays. New York, USA: JohnWiley & Sons, Inc., 1999, p. 61. Zhao, A. P., and S. R. Cvetkovic, “Finite-element analysis of hybrid modes in uniaxial planar waveguides by a simple iterative method,” Opt. Lett., vol. 20, pp. 139–141, 1995. Zienkiewicz, O. C., The Finite Element Method. London, UK: McGraw Hill, 1977. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58369 | - |
| dc.description.abstract | 本研究根據有限元法建立一套平面光波導模態解析法,得以求解由各向異性材料構成的波導之導波和洩漏波模態。所考慮的各向異性材料可具有任意的介電常數張量,例如單軸材料之光軸可指向任意方向。本研究特別著重複數有效折射率的正確數值求解,並與可取得之解析解比較,尤其著重決定模態洩漏量的有效折射率之虛部部分。當光軸僅在平行於波導界面之平面上改變方向時,本研究以相較於三十年之前所發表的解析方程式更有系統的方式分別推導出導波和洩漏波模態的解析特徵方程式,並展示所得到的複數有效折射率解析值與有限元素數值結果極為吻合。
有限元素的推導是根據三個電場分量或三個磁場分量,採用二次元的節點基底,獲得二次特徵值方程式,然後採用shift-and-invert Arnoldi方法求解。本研究發現,在求解洩漏模態時,完全匹配層的厚度和其理論反射係數應適當選擇才能獲得良好的有限元素解的結果。 此外本研究亦探討存在於金屬材料與單軸各向異性介電材料之接面上的表面波或是表面電漿子模態,當光軸落於接面之平面時,由求解所推得的特徵方程式,發現洩漏表面波的存在。金屬材料可假設為具有負數介電常數的無損材料或是介電常數具有虛部的實際金屬材料(如銀) ,本研究比較兩者之間在洩漏模態解得的洩漏損耗特性的差異。數值結果顯示,上述情況的解析解與以本研究所建立的有限元素法獲得的結果相當吻合。 最後,解析解與有限元素分析進一步推展於具有兩個接面結構上的表面電漿子模態的研究,此兩個接面結構由單軸各向異性介電材料、金屬薄膜與各向同性介電基座所組成。 | zh_TW |
| dc.description.abstract | A planar optical waveguide mode solver is established based on a finite-element (FE) formulation for determining the guided and leaky modes that exist on waveguides made of anisotropic materials with arbitrary permittivity tensor, for example, with arbitrary optic-axis orientation in the uniaxially anisotropic material case. Correct numerical determination of the complex effective index, especially its imaginary part which gives the modal leakage, is particularly emphasized referring to available analytical solutions. For the situation when the optic axis changes its direction only in the plane parallel to the waveguide interface planes, analytical characteristic equations for solving purely guided and leaky modes are separately derived in a more systematic manner compared with prior analytical formulae reported more than three decades ago, with the obtained complex effective indices agreeing excellently with FE solutions. It is found that in the FE analysis of leaky modes, the thickness of the perfectly matched layer (PML) and the PML theoretical reflection coefficient should be properly chosen. The FE formulation is based on either the three electric-field components or the three magnetic-field components using quadratic nodal bases, resulting in a quadratic eigenvalue equation which is then solved by the shift-and-invert Arnoldi method.
Furthermore, by solving analytically derived characteristic equations, leaky surface waves or leaky surface plasmon polariton (SPP) modes are found to exist at an interface between a metal material and a uniaxially anisotropic dielectric material with its optic axis falling in the plane of the interface. Both the assumed lossless metal material with negative relative permittivity and the real metal such as silver having an imaginary part in its permittivity are considered to reveal the difference in the solved leakage loss behavior of the leaky modes. Analytical solutions are also confirmed by the FE eigenmode analysis. The analytical and FE analysis are finally extended to SPP modes on two-interface structures composed of a uniaxially anisotropic dielectric material, a metal thin film, and an isotropic dielectric substrate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:12:48Z (GMT). No. of bitstreams: 1 ntu-103-D93941021-1.pdf: 1765311 bytes, checksum: 43e875fd065c127fc62eff5f5c61a1e7 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . 5 2 Solving a Dielectric Slab Waveguide Involving Materials of Arbitrary Dielectric Anisotropy with a Finite-Element Formulation 6 2.1 The Finite Element Formulation . . . . . . . . . . . .6 2.1.1 The perfectly matched layers . . . . . . . . . . . .7 2.1.2 The quadratic line elements . . . . . . . . . . . . 8 2.1.3 One-dimensional Gauss Legendre quadrature integration formulas . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Finite element discretization . . . . . . . . . . .14 2.1.5 Derivation of the quadratic eigenvalue problem . . 14 2.1.6 Assembling the local elements to the global matrix 17 2.2 The Generalized Eigenvalue Problem and Its Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . .18 3 Leaky Modes on a Dielectric Slab Waveguide Involving Materials of Arbitrary Dielectric Anisotropy 30 3.1 Numerical Examples . . . . . . . . . . . . . . . . .30 3.2 The Analytical Analysis of a Symmetrical Anisotropic Planar Waveguide withφ= 90°. . . . . . . . . . . . . .35 4 Analysis of SPP Modes on Anisotropic Structures 54 4.1 An Interface Between Metal and Uniaxially Anisotropic Materials withφ= 0° . . . . . . . . . . . . . . . . . 54 4.2 An Interface Between Metal and Uniaxially Anisotropic Materials withφ= 90° . . . . . . . . . . . . . . . . .56 4.3 Two-Interface Structure Containing Isotropic, Metal, and Uniaxially Anisotropic Materials with φ= 0° . . . .59 4.4 Two-Interface Structure Containing Isotropic, Metal, and Uniaxially Anisotropic Materials withφ= 90° . . . 63 4.5 Numerical Results . . . . . . . . . . . . . . . . . .71 4.5.1 Guided and leaky surface waves at an interface between metal and uniaxially anisotropic materials withφ= 90° . . . . . . . . . . . . . . . . . . . . . . . . . .71 4.5.2 Guided surface waves at an interface between metal and uniaxially anisotropic materials withφ= 0° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.5.3 Guided and leaky surface waves at the two-interface structure containing an isotropic dielectric, a metal film, and a uniaxially anisotropic material . . . . . . . . . .74 5 Conclusion 96 Bibliography 98 | |
| dc.language.iso | en | |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 平面波導 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 表面波 | zh_TW |
| dc.subject | 導波 | zh_TW |
| dc.subject | 晶體光學 | zh_TW |
| dc.subject | 雙折性 | zh_TW |
| dc.subject | 各向異性光學材料 | zh_TW |
| dc.subject | 電磁光學 | zh_TW |
| dc.subject | 洩漏模態 | zh_TW |
| dc.subject | liquid crystals | en |
| dc.subject | birefringence | en |
| dc.subject | crystal optics | en |
| dc.subject | electromagnetic optics | en |
| dc.subject | guided waves | en |
| dc.subject | leaky modes | en |
| dc.subject | Anisotropic optical materials | en |
| dc.subject | planar waveguides | en |
| dc.subject | surface plasmons | en |
| dc.subject | surface waves | en |
| dc.title | 含有各向異性材質之平面波導與表面電漿子結構之導波模態研究 | zh_TW |
| dc.title | Studies of Guided Modes on Planar-Waveguide and Surface-Plasmon Structures Involving Anisotropic Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王維新(Way-Seen Wang),江衍偉(Yean-Woei Kiang),陳瑞琳(Ruey-Lin Chern),楊宗哲(Tzong-Jer Yang),賴映杰(Yin-Chieh Lai) | |
| dc.subject.keyword | 各向異性光學材料,雙折性,晶體光學,電磁光學,導波,洩漏模態,液晶,平面波導,表面電漿子,表面波, | zh_TW |
| dc.subject.keyword | Anisotropic optical materials,birefringence,crystal optics,electromagnetic optics,guided waves,leaky modes,liquid crystals,planar waveguides,surface plasmons,surface waves, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
