請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58358
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李雅榮(Ya-Jung Lee) | |
dc.contributor.author | Yuan-Yi Chang | en |
dc.contributor.author | 張原譯 | zh_TW |
dc.date.accessioned | 2021-06-16T08:12:27Z | - |
dc.date.available | 2014-03-09 | |
dc.date.copyright | 2014-03-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-17 | |
dc.identifier.citation | 1. 'Global Wind Report 2012', Global Wind Energy Council, April 2013, p. 9, 42.
2. W.C. de Goeij, M.J.L. van Tooren, and A. Beukers, 'Implementation of bending-torsion coupling in the design of a wind-turbine rotor-blade', Applied Energy, July 1999, 63(3), p. 191-207. 3. F.M. Jensen, B.G. Falzon, J. Ankersen, and H. Stang, 'Structural testing and numerical simulation of a 34m composite wind turbine blade', Composite structures, 2006, 76(1-2), p. 52-61. 4. L.C.T. Overgaard, E. Lund, and O.T. Thomsen, 'Structural collapse of a wind turbine blade. Part A: static test and equivalent single layered models', Composites Part A: Applied Science and Manufacturing, February 2010, 41(2), p. 257-270. 5. L.C.T. Overgaard and E. Lund, 'Structural collapse of a wind turbine blade. Part B: Progressive interlaminar failure models', Composites Part A: Applied Science and Manufacturing, February 2010, 41(2), p. 271-283. 6. Takanori Uchida, Takashi Maruyama, Hirohiko Ishikawa, and Masaru Zako, 'Investigation of the Causes of Wind Turbine Blade Damage at Shiratakiyama Wind Farm in Japan-A Computer Simulation Based Approach', Reports of Research Institute for Applied Mechanics, Kyushu University, September 2011, p. 13-25. 7. J.C. Marin, A. Barroso, F. Paris, and J. Canas, 'Study of damage and repair of blades of a 300 kW wind turbine', Energy, July 2008, 33(7), p. 1068-1083. 8. International Electrotechnical Commission, 'IEC 61400-1 Ed.3, Wind turbines- Part 1: Design requirements', 2005. 9. Masahiro Matsui, Takeshi Ishihara, and Kazuki Hibi, 'Directional characteristics of probability distribution of extreme wind speeds by typhoon simulation', Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15), p. 1541-1553. 10. B.A. Harper, J.D. Kepert, and J.D. Ginger, 'Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions', World Meteorological Organization, 2008. 11. '日本型風力発電ガイドライン', 台風・乱流対策編 , 独立行政法人 新エネルギー・産業技術総合開発機構, 2008. 12. Qi Wu, 'Chinese typhoon knocks out 17 wind turbines', Wind Power Monthly, 25 September 2013. Available from: http://www.windpowermonthly.com/article/1213452/chinese-typhoon-knocks-17 -wind-turbines. 13. Tetsuya Kogaki, Hikaru Matsumiya, Hiroyuki Abe, and Susumu Ogawa, 'Wind Characteristics and Wind Models for Wind Turbine Design in Japan (1st Report: Analysis of NEDO FT Data on Turbulence Characteristics and New Normal Turbulence Model Incorporating These Results)', Journal of Environment and Engineering, November 2009, 4(3), p. 467-478. 14. Tetsuya Kogaki, Hikaru Matsumiya, Hiroyuki Abe, and Susumu Ogawa, 'Wind Characteristics and Wind Models for Wind Turbine Design in Japan (2nd Report: Analysis of Measured Data Obtained by Ultrasonic Anemometer and Cup Anemometers)', Journal of Environment and Engineering, November 2009, 4(3), p. 479-489. 15. 吳佳梁與李成峰, '海上風力發電技術', 五南出版社, 2012. 16. Zheng-quan Li, Sheng-jun Chen, Hao Ma, and Tao Feng, 'Design defect of wind turbine operating in typhoon activity zone', Engineering Failure Analysis, January 2013, 27, p. 165-172. 17. Daniel Trias, Raquel Rojo, Inaki Nuin, and Mikel Lasa, 'Fracture mechanics and new techniques and criteria for the design of structural components for wind turbines', European Wind Energy Conference(EWEC), Milan, Italy, May 2007. 18. Y.M. Ji and K.S. Han, 'Fracture mechanics approach for failure of adhesive joints in wind turbine blades', Renewable Energy, July 2013. 19. Yi Huaa, Ananth Ram Mahanth Kasavajhalaa, and Linxia Gu, 'Elastic-plastic analysis and strength evaluation of adhesive joints in wind turbine blades', Composites Part B: Engineering, January 2013, 44(1), p. 650-656. 20. Brian Cox and Qingda Yang, 'In Quest of Virtual Tests for Structural Composites', Science, November 2006, 314, p. 1102-1107. 21. Geoff Dutton, Matthew Clarke, and Paul A. Bonnet, 'Modelling of static and fatigue failure in wind turbine blades using a parametric blade model', EWEC, 2010. 22. 林輝政、鄭錦榮、李雅榮與鐘承憲, '子計畫六:風機葉片之逆向工程與修護評估技術之建立', 台電中彰風場風力特性評估與大型風力機組技術研究完 成報告 , 台灣電力股份有限公司, 2012. 23. Tony Burton, David Sharpe, Nick Jenkins, and Ervin Bossanyi, 'Wind Energy Handbook', 2001. 24. Brian Hayman, Jakob Wedel-Heinen, and Povl Brondsted, 'Materials Challenges in Present and Future Wind Energy', MRS bulletin, 2008, 33(4), p. 343-353. 25. 'Design limits and solutions for very large wind turbines', Upwind, March 2011, p. 17. 26. Martin O.L. Hansen, 'Aerodynamics of Wind Turbines', 2nd ed: Earthscan, 2008, p. 7-10. 27. Peter J. Schubel and Richard J. Crossley, 'Wind Turbine Blade Design', Energies, September 2012, 5(9), p. 3425-3449. 28. Lars Chr. T. Overgaard and Erik Lund, 'Structural Design Sensitivity Analysis and Optimization of Vestas V52 Wind Turbine Blade', 6th World Congress on Structural and Multidisciplinary Optimization, Brazil, 2005. 29. Bent F. Sorensen, Erik Jorgensen, Christian P. Debel, and Find M. Jensen, 'Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1)-Summary Report', Riso National Laboratory, 2004. 30. 'Vestas 660 kW Variable Slip Wind Turbine' Vestas, 2000. 31. 'Tropical cyclone', Encyclopa dia Britannica Online, 2005. Available from: http://www.britannica.com/EBchecked/media/75357/. 32. Niels-Erik Clausen, Soren Ott, Niels-Jacob Tarp-Johansen, and Per Norgard, 'Design of Wind Turbines in an Area with Tropical Cyclones', European Wind Energy Conference, March 2006. 33. Laurie J. Schmidt, 'Dropping in on a Hurricane', Global Hydrology Resource Center, September 2002. Available from: http://earthobservatory.nasa.gov/Features/camex4/. 34. James L. Franklin, Michael L. Black, and Krystal Valde, 'GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications', Weather and Forecasting, 2002, 18, p. 32-44. 35. James L. Franklin, Michael L. Black, and Krystal Valde, 'Eyewall wind profiles in hurricanes determined by GPS dropwindsondes', 24th Conference on Hurricanes and Tropical Meteorology, 2000. 36. '台灣颱風分析與預報輔助系統', 中央氣象局. Available from: http://photino.cwb.gov.tw/tyweb/mainpage.htm. 37. 林輝政、鍾承憲、陳凱琳與鄭錦榮, '修補後 V47 整支葉片實體靜態分析與 觀園#12 GE-1.5SE 風機葉片破損診斷分析', 台灣電力股份有限公司, 2014. 38. '颱風資料庫', 中央氣象局. Available from: http://rdc28.cwb.gov.tw/. 39. Bo Yu and Arindam Gan Chowdhury, 'Gust Factors and Turbulence Intensities for the Tropical Cyclone Environment', Journal of Applied Meteorology and Climatology, 2009, 48(3), p. 534-552. 40. John L. Schroeder, Douglas A. Smith, and Richard E. Peterson, 'Variation of turbulence intensities and integral scales during the passage of a hurricane', Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78, p. 65-72. 41. Shuyang Cao, Yukio Tamura, Naoshi Kikuchi, and Mamoru Saito, 'Wind characteristics of a strong typhoon', Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(1), p. 11-21. 42. J.S. Kouh, S.W. Chau, and C.Y. Yang, 'The Simulation of Considering the Gust Conditions of Transient Wind Turbine Around the Wind Field', Journal of Taiwan Society of Naval Architects and Marine Engineers, March 2012, 3(4). 43. Josue Garcia Quini and Gerson Marinucci, 'Polyurethane Structural Adhesives Applied in Automotive Composite Joints', Materials Research, 2012, 15(3), p. 434-439. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58358 | - |
dc.description.abstract | 隨著再生能源科技的發展,傳統能源的日益枯竭,全球替代能源比例已成持續不斷成長的趨勢。風力發電為其一主要產能方式,而在風力潛能豐富的臺灣,此發電方式也在積極開發中。但在夏秋兩季時有颱風侵襲臺灣本島及外海,如何因應此極端且複雜的風力狀況,並盡量避免風力發電機組的損壞,對本國是較特別卻極為重要的課題。本研究預期藉由曾商轉卻因颱風吹拂而損壞之葉片,觀察其破損狀況,同時以逆向工程所得資訊推估其原先完整模型,其後建立於颱風風況下一系列之分析流程。利用可計算空氣動力之工具,取得風在不同入流情形下施加在葉片的壓力,將之匯進有限元素結構分析軟體,最後得到葉片結構之應力分布,進而與實際葉片作比對分析,探討其受損之原因,提出改善建議,以供國內設計風機葉片之參考。 | zh_TW |
dc.description.abstract | As the technology of renewable energy keeps developing and traditional energy is consumed day by day, the global proportion of renewable energy constantly goes up. Wind energy is one of the main ways of renewable energy. On the beautiful island, Taiwan, there is also an enormous amount of wind energy resource, from which Taiwan government is developing the related technology to gain electricity. But when it’s in summer or autumn, typhoon often comes to strike Taiwan. How to deal with this ultimate as well as complex situation and keep the wind turbines away from damage at the same time is a special but critical subject to Taiwan. This project plans to observe the damage situation of wind turbine blade caused by typhoon at first, and create the original model by reverse engineering. Afterwards, a serious of analysis process in typhoon circumstances could be constructed. The load, which is the pressure caused by the wind, is computed by CFD method and exported to the structural analysis software. From the result of stress distribution we could compare with the real damage situation to deduce the causes of damage and make some suggestions of modification. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:12:27Z (GMT). No. of bitstreams: 1 ntu-103-R00525096-1.pdf: 8724571 bytes, checksum: 7ccbff7331de1992930516094f5c2998 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書....................................................................................................... #
誌謝 ............................................................................................................................... i 中文摘要 ...................................................................................................................... ii ABSTRACT ................................................................................................................ iii 目錄 ............................................................................................................................. iv 圖目錄 ........................................................................................................................ vii 表目錄 ........................................................................................................................ xii 第 1 章 緒論 ....................................................................................................... 1 1.1 研究動機 .................................................................................................... 1 1.2 文獻回顧 .................................................................................................... 2 1.3 研究方法與目的 ........................................................................................ 4 1.4 論文架構 .................................................................................................... 5 第 2 章 風力發電機葉片概述 ............................................................................ 6 2.1 風力發電機之發展 .................................................................................... 6 2.2 風力發電機葉片結構................................................................................. 7 2.2.1 葉片外型幾何 ................................................................................... 7 2.2.2 葉片內部結構 ................................................................................... 8 2.2.3 葉片損傷型式 ................................................................................. 10 2.2.4 葉片損傷因素 ................................................................................. 11 2.3 分析葉片說明 .......................................................................................... 13 2.3.1 分析葉片基本資料及外型 .............................................................. 13 v 2.3.2 分析葉片結構組成 ......................................................................... 15 2.3.3 破損狀況檢視 ................................................................................. 18 第 3 章 風機葉片負荷模擬 .............................................................................. 26 3.1 颱風特性 .................................................................................................. 26 3.2 風況資料 .................................................................................................. 29 3.2.1 風速條件 ......................................................................................... 31 3.2.2 紊流強度與風向 ............................................................................. 33 3.3 颱風負荷模擬 .......................................................................................... 34 3.3.1 模型建立與驗證 ............................................................................. 34 3.3.2 葉片於颱風風況下之負荷模擬 ...................................................... 39 第 4 章 風機葉片之結構應力分析 .................................................................. 47 4.1 風機葉片之有限元素模型建立 ............................................................... 47 4.2 結構分析 .................................................................................................. 50 4.2.1 有限元素模型驗證 ......................................................................... 50 4.2.2 不同入流角風況下之葉片強度分析 .............................................. 57 4.3 膠合元素之應用 ...................................................................................... 65 4.3.1 結構膠重要性 ................................................................................. 65 4.3.2 考慮結構膠之葉片模型改良 .......................................................... 66 4.3.3 考慮結構膠之葉片模型分析 .......................................................... 74 第 5 章 結論與建議 ......................................................................................... 85 5.1 結論 ......................................................................................................... 85 5.2 未來研究建議 .......................................................................................... 86 參考文獻 .................................................................................................................... 87 附錄 A:不同風向角之壓力分佈 .............................................................................. 91 附錄 B:全殼元素之葉片結構分析結果 .................................................................. 97 附錄 C:含結構膠之葉片結構分析結果 ................................................................ 102 | |
dc.language.iso | zh-TW | |
dc.title | 風力發電機葉片於颱風風況下之結構強度分析 | zh_TW |
dc.title | The Structural Analysis of Wind Turbine Blades in Typhoon Conditions | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林輝政(Hui-Cheng Lin),郭真祥(Chen-Hsiang Kuo),鍾承憲(Cheng-Hsien Chung),詹育禔(Yu-Ti Jhan) | |
dc.subject.keyword | 葉片,颱風,有限元素法,結構, | zh_TW |
dc.subject.keyword | wind turbine blade,typhoon,FEM,structure, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 8.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。