Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲
dc.contributor.authorChi-Hao Lien
dc.contributor.author李其澔zh_TW
dc.date.accessioned2021-06-16T08:12:10Z-
dc.date.available2014-03-09
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-02-17
dc.identifier.citation[1] Ray-Bing Chen, Dai-Ni Hsieh, Ying Hung, and Weichung
Wang. Optimization latin gypercube designs by particle swarm.
Staticstics and Computing, pages 1-14, 2012.
[2] Ray-Bing Chen, Yen-Wen Hsu, and Weichung Wang. Central
composite discrepancy-based uniform designs for irregular
experimental regions. 2012.
[3] Karel Crombecq, Eric Laermans, and Tom Dhaene. Efficient
space-filling and non-collapsing sequential design strategies
for simulation-based modeling. European Journal of
Operational Research, 214(3):683-696, 2011.
[4] Danel Draguljic, Thomas J Santner, and Angela M Dean.
Noncollapsing space-filling designs for bounded
nonrectangular regions. Technometrics 54(2):169-178, 2012.
[5] NR Draper and I Guttman. Response surface designs in
flexible regions. Journal of the American Statistical
Association, 81(396):1089-1094, 1986.
[6] Russell Eberhart and James Kennedy. A new optimizer using
particle swarm theory. In Micro Machine and Human Science,
1995. MHS'95., Proceedings of the Sixth International
Symposium on, pages 39-43. IEEE, 1995.
[7] Kai-Tai Fang. The uniform design: application of number-
theoretic methods in experimental design. Acta Math. Appl.
Sinica, 3:363-372, 1980.
[8] Kai-Tai Fang, Dennis KJ Lin, Peter Winker, and Yong
Zhang. Uniform design: theory and applications.
Technometrics, 42(3):237-248, 2000.
[9] Kai-Tai Fang, Chang-Xing Ma and Peter Winker. Center l2-
discrepancy of random sampling and latin hypercube design,
and construction of uniform designs. Mathematics of
Computation, 71(237):274-296, 2002.
[10] Ying Hung. Adaptive probability-based latin hypercube
designs. Journal of the American Statistical Association,
106(493), 2011.
[11] Ying Hung, Yasuo Amemiya, and Chien-Fu Jeff Wu.
Probability-based latin hypercube designs for slid-
rectangular regions.
[12] Mark E Johnson, Leslie M Moore, and Donald Ylvisaker.
Minimax and maximin distance designs. Journal of statistical
planning and inference, 26(2):131-148, 1990.
[13] Dennis KJ Lin, Chris Sharpe, and Peter Winker.
Optimiazed u-type designs on flexible regions. Computation
Statistics & Data Analysis, 54(6):1505-1515, 2010.
[14] Michael D McKay, Richard J Beckman, and William J
Conover. Comparison of three methods for selecting values of
input variables in the analysis of output from a computer
code. Technometrics, 21(2):239-245, 1979.
[15] Douglas C Montgomery. Design and analysis of
experiments, volume 7. Wiley New York, 1984.
[16] Max D Morris and Toby J Mitchell. Exploratory designs
for computational experiments. Journal of statistical
planning and inference, 43(3):381-402, 1995.
[17] Roger R Schmidt, EE Cruz, and M Iyengar. Challenges of
data center thermal management. IBM Journal of Research and
Development, 49(4.5):709-723, 2005.
[18] Timothy W Simpson, Dennis KJ Lin, and Wei Chen. Sampling
strategies for computer experiments: design and analysis.
International Journal of Reliability and Applications, 2
(3):209-240, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58349-
dc.description.abstractUniformity of experimental designs is an important issue in computer experiments recent years. To reduce the cost of handling experiment, we need to find usable designs effectively and effeciently. A design with good space-filling and non-collapsing properties may help us get the most information under some specific cost. Since a lot amount of real problems require grid discretization, based on the framework of the discrete particle swarm optimization (DPSO), we try several strategies and propose several applied methods to discuss the multi-objective issue, and will illustrate it by handling experiments on several regular and irregular feasible domains by some DPSO-based algorithms.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:12:10Z (GMT). No. of bitstreams: 1
ntu-103-R00221027-1.pdf: 631067 bytes, checksum: be2b94d7eb0968a42338fb4038d31db1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝---i
Table of Content---ii
List of Figures---iv
List of Tables---v
中文摘要---vi
Abstract---vii
1 Introduction---1
2 Problem Formulation and Algorithms---4
2.1 Uniform Design and Objective Criteria---4
2.1.1 The Feasible Domain and Grid Discretization---5
2.1.2 Space-filling Property and the Maximin Pairwise
Distance---6
2.1.3 Non-collapsing Property and the Projected
Distance---9
2.2 Methods and Algorithms---11
2.2.1 Discrete Particle Swarm Optimization (DPSO)---12
2.2.2 A-DPSO (DPSO with Aggrgated Criteiron)---14
2.2.3 P-DPSO (DPSO with Penalty Criterion)---17
2.2.4 C-DPSO (Conditioned DPSO)---18
3 Numerical Results and Discussion---22
3.1 Experimental Regions---22
3.2 Tuning Parameters---25
3.3 Comparison of the DPSO-based Algorithms---26
3.3.1 Linear Constraint for n=10 and K=2,4 (Domain D_1
and D_2)---28
3.3.2 Semi-circle/ball for n=10, K=2,3---30
3.3.3 Linear Constraint and Semi-Circle, n=50, K=2---32
3.3.4 Flexible Region for m=9999, 2, 1, 0.5, 0.3, K=2
---33
3.4 Discussion---38
3.4.1 The Solution Set---38
3.4.2 The design size n and the dimensionality K---39
3.4.3 Further Investigation if C-DPSO and P-DPSO---39
4 Real Application---42
5 Conclusion and Future Works---47
Appendix---48
Bibliography---58
dc.language.isoen
dc.subject試驗設計zh_TW
dc.subject離散粒子群演算法zh_TW
dc.subject均勻性質zh_TW
dc.subject無摺疊性質zh_TW
dc.subject電腦實驗zh_TW
dc.subjectSpace-fillingen
dc.subjectNon-collapsingen
dc.subjectDiscrete Particle Swarm Optimizationen
dc.subjectComputer Experimenten
dc.subjectUniform Experimental Designsen
dc.title使用離散粒子群演算法尋找最佳無摺疊均勻實驗設計zh_TW
dc.titleUsing Discrete Particle Swarm Optimization to Find Optimal Non-collapsing and Space-filling Experimental Designsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞彬,陳素雲
dc.subject.keyword電腦實驗,試驗設計,均勻性質,無摺疊性質,離散粒子群演算法,zh_TW
dc.subject.keywordComputer Experiment,Space-filling,Uniform Experimental Designs,Non-collapsing,Discrete Particle Swarm Optimization,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2014-02-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
616.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved