請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58337完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白偉武 | |
| dc.contributor.author | Kai-Jun Zhan | en |
| dc.contributor.author | 詹凱鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:11:48Z | - |
| dc.date.available | 2017-03-18 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-17 | |
| dc.identifier.citation | 1. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191.
2. Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. 3. Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H. Graphene: Materially Better Carbon. MRS Bull.2010, 35, 289–295. 4. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. 5. Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487–496. 6. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611–622. 7. Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. An Overview of Graphene in Energy Production and Storage Applications. J. Power Sources 2011, 196, 4873–4885. 8. Pumera, M. Graphene in Biosensing. Mater. Today 2011, 14, 308–315. 9. Park, S.; Ruoff, R. S. Chemical Methods For the Production of Graphenes. Nat. Nanotechnol. 2009, 5, 309–309. 10. Mattevi, C.; Kim, H.; Chhowalla,M. A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324–3334. 11. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science, 2008, 315, 490-493. 12. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science,2004, 306, 666–669. 13. Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature ,2005, 438, 201–204. 14. Cadelano E.; Palla P. L.; Giordano S.; Colombo L.; Nonlinear Elasticity of Monolayer Graphene. Phys. Rev. Lett. ,2009, 102, 235502. 15. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science ,2008, 321, 385–388. 16. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science ,2004, 306, 666–669. 17. Park, S.; Ruoff, R. S. Chemical Methods For the Production of Graphenes. Nat. Nanotechnol. 2009, 5, 309–309. 18. S. Park and R.S. Ruoff, “Chemical methods for the production of graphenes” Nature Nanotechnology 4, 217-224 (2009) 19. Y. Zhu et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications Advanced Materials ,2010, 22, 3906-3924. 20. O.C. Compton and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small 2010,6, 711-723 . 21. X. Huang et al. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications, Small, 2011, 7, 1876-1902 22. Forbeaux I.; Themlin, J.-M.; Debever, J.-M. Heteroepitaxial graphite on 6H-SiC (0001) Interface formation through conduction-band electronic structure. Phys. Rev. B 1998,58, 16396 23. Berger, C.; Song, Z.M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.;Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer,W. A. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route Toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. 24. Berger, C.; Song, Z.M.; Li, X. B.;Wu, X. S.; Brown, N.; Naud, C.;Mayou, D.; Li, T. B.; Hass,J.;Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer,W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191–1196. 25. Li, X. S.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009, 324, 1312. 26. Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene Segregated on Ni Surfaces and Transferred to Insulators. Appl. Phys. Lett. 2008, 93, 113103. 27. De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. Synthesis, Transfer, and Devices of Singleand Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans. Nanotechnol. 2009,8,135–138. 28. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus,M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. Vol. 46, No. 10 ’ 2013 ’ 2329–2339 29. ASM Handbook: Alloy Phase Diagrams;Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L., Eds.; ASM International: Materials Park, OH, 2002; Vol. 3. 30. Eizenberg, M.; Blakely, J. M. Carbon Monolayer Phase Condensation on Ni(111). Surf. Sci. 1979, 82, 228–236. 31. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 2009, 457, 706. 32. N'Diaye, A. T., Bleikamp, S., Feibelman, P. J. & Michely, T. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. ,2006, 97, 215501. 33. Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. ,2008,7, 406. 34. Li, X. S.; Magnuson, C. W.; Venugopal, A; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large Area Graphene Single Crystals Grown by Low Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society , 2009, 133, 2816 35. Cecilia M.; Hokwon K.; Manish C. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324 36.Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J. Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5, 3385. 37. Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature, 2010, 468, 549. 38. Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors. Carbon, 2011, 49, 4204 . 39. Dong, X.; Wang, P.; Fang, W.; Su, C.-Y.; Chen, Y.-H.; Li, L.-J.; Huang, W.; Chen, P. Growth of Large-Sized Graphene Thin- Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure. Carbon 2011, 49, 3672. 40. Terasawa, T.; Saiki, K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon ,2012,50, 869. 41. Xiaochu, G.; Haibo, Z.; Bangjing, Z.; Xinyao, Y.; Yong J.; Bai S.; Meiyun Z.; Xingjiu H.; Jinhuai L.; Tao L. Asimple method to synthesize graphene at 633K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50, 306 (2012). 42. Robert S. W.; Bernhard C. B.; Raoul B.; Caterina D.; Carsten B; Robert S.; Stephan S. In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano Lett. 11, 4154 (2011). 43.Wei, Wu.; Luis, A. Jauregui; Zhihua, Su; Zhihong, Liu; Jiming, Bao; Yong P. Chen; Qingkai Yu, Growth of Single Crystal Graphene Arrays by Locally Controlling Nucleation on Polycrystalline Cu Using Chemical Vapor Deposition. Adv. Mater. 23, 4898 (2011). 44.Tianru, W.; Guqiao, D.; Honglie, S.; Haomin, W.; Lei, S.; Yun, Z.; Da, J.; Xiaoming, X., Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds. Nanoscale 2013.5(12):5456-61 45. Luo, Z.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chem. Mater. 23, 1441 (2011). 46. Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure Zhengtang Luo , Ye Lu , Daniel W. Singer , Matthew E. Berck , Luke A. Somers , Brett R. Goldsmith , andA. T. Charlie Johnson * hem. Mater., 2011, 23 (6), pp 1441–1447 47.Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils. ACS Nano 6, 2471 (2012). 48. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang4 K. S. Novoselov, S. Roth, and A. K. Geim ,Raman spectrum of graphene and graphene layers , Physical Review Letters 97 (18) (2006). 49. Marsden, A. J.; Phillips, M; Wilson, N. R. “Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper”, Nanotechnology 24, 255704 (2013). 50. A. C. Ferrari & D. M. Basko “ Raman spectroscopy as a versatile tool for studying the properties of graphene” Nature Nanotechnology8 , 235-246 10.1038.(2013). 51. Luo, Z.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C. Growth Mechanism of Hexagonal-Shape Graphene Flakes with Zigzag Edges. ACS Nano 2011, 5,9154–9160. 52. Yu, Q. K.; Jauregui, L. A.;Wu,W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.;Pandey, D.; Wei, D. G. Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition. Nat. Mater. 2011, 10, 443–449. 53. Gao, L. B.; Ren,W. C.; Xu, H. L.; Jin, L.;Wang, Z. X.;Ma, T.;Ma, L. P.; Zhang, Z. Y.; Fu, Q.;Peng, L.M.; Bao, X. H.; Cheng, H.M. Repeated Growth and Bubbling Transfer of Graphene With Millimetre-size Single-crystal Grains Using Platinum. Nat. Commun. 2012, 3, 699. 54. Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano 2012, 6, 9110–9117. 55. Wu, Y. A.; Robertson, A.W.; Schaffel, F.; Speller, S. C.;Warner, J. H. Aligned Rectangular Few-Layer Graphene Domains on Copper Surfaces. Chem. Mater. 2011, 23, 4543–4547. 56. Wang, H.;Wang, G.; Bao, P.; Yang, S.; Zhu,W.; Xie, X.; Zhang,W.-J. Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. J. Am. Chem. Soc. 2012, 134, 3627–3630. 57. Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Lett. 2010, 10, 4328–4334. 58. Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties. Nano Lett. 2012, 12, 2810–2816. 59. Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio,Sheng Dai,Panos Datskos, Gyula Eres, and Sergei Smirnov, “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene” ACS Nano. 5, 6069 (2011). 60. Yi Zhang;Zhen Li;Pyojae Kim; Luyao Zhang; Chongwu Zhou, “Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene” ACS Nano. 6, 126 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58337 | - |
| dc.description.abstract | 甲烷與氫氣製作高品質氣相沉積石墨烯通常需要在高於1000℃的溫度才能完成,而若降低成長溫度,石墨烯的品質也將跟著下降。 在此論文,我們發展出通過控制生長參數如,基板表面紋理,初始成核,和降溫過程,在 低溫300℃也可以成 長出高於97%的覆蓋率與高達約 ~2000 cm2/V.sec的載子遷移率的石墨烯氣相沉積方法。利用原子力顯微鏡,光學顯微,顯微拉曼光譜,和載子遷移率測量揭示了上述 生長控制參數的關鍵角色。此外,我們還研究了成長溫度改變對石墨烯生成的影響,我們發現石墨烯的品質隨著溫度的降低而變差,但隨後在溫度 更低時又變好。這個出乎意料的結果表明在CVD石墨烯成長的過程當中,碳的生長和脫附都重要,且彼此之間為競爭的關係。 | zh_TW |
| dc.description.abstract | High quality chemical vapor deposition (CVD) graphene using methane and hydrogen is commonly prepared on Cu foils at a temperature >1000 ℃. However, it is desirable to reduce this growth temperature without sacrificing the quality. We discovered that high quality continuous graphene with a carrier mobility ~2000 cm2/V.sec and a coverage >97% can be prepared down to 300℃, using thermal CVD and only CH4 and H2. This result is enabled by controlling the substrate texture and initial graphene nucleation process. Combined atomic force microscopy, optical microscopy, micro-Raman, and mobility measurement reveal the key roles of these the aforementioned growth control parameters. We also conducted growth temperature dependence and found that graphene quality first deteriorates with decreasing temperature but then recovers. This unexpected result indicates the presence and significance of competing desorption and growth processes during graphene CVD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:11:48Z (GMT). No. of bitstreams: 1 ntu-103-R00245011-1.pdf: 1617003 bytes, checksum: cc6e885b1905bbaf1aef83937cf00b6b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Experimental Setups and Characterization Methods 8 2.1 Preparation of copper foils 8 2.2 Chemical vapor deposition system 9 2.3 Graphene transfer procedure 11 2.4 Optical microscopy characterization of graphene 12 2.5 Micro-Raman spectroscopy 12 2.6 Atomic force microscopy and frictional force microscopy 14 2.7 Carrier mobility measurement 16 Chapter 3 Experimental Results and Discussion 18 3.1 CVD monolayer graphene 18 3.1.1 Typical growth procedure 18 3.1.2 Effect of different cooling rates on the quality of monolayer graphene 19 3.1.3 Nucleation and seeding of graphene versus cooling rates 22 3.2 Two-step growth of graphene at lower temperature 27 3.2.1 Second-growth at 300℃ 27 3.2.2 Discussion the 2nd-growth situation 31 3.3 Effect of different seeding condition on the graphene 2nd-growth 32 3.3.1 Two-step growth results with different cooling rates 32 3.3.2 Growth speed variation 34 3.4 Second-growth at different temperature 36 3.4.1 Second-grow at 300℃ to 900℃ 36 3.4.2 Discussion the mechanism of growth/dissolving competition 41 Chapter 4 Conclusion 44 REFERENCES 45 | |
| dc.language.iso | en | |
| dc.subject | 低溫 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 氣相沉積 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | Low temperature | en |
| dc.subject | CVD | en |
| dc.subject | methane | en |
| dc.title | 在低溫成長高品質氣相沉積石墨烯 | zh_TW |
| dc.title | High Quality Graphene Grown by Chemical Vapor Deposition at Lower temperature | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林麗瓊,林更青,江海邦 | |
| dc.subject.keyword | 石墨烯,低溫,氣相沉積,甲烷, | zh_TW |
| dc.subject.keyword | graphene,Low temperature,CVD,methane, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-02-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
