Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正興
dc.contributor.authorHo-Hsiung Yangen
dc.contributor.author楊鶴雄zh_TW
dc.date.accessioned2021-06-16T08:11:22Z-
dc.date.available2015-03-09
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-02-19
dc.identifier.citation1. 日本道路協會 (2002),「道路橋示方書•同解說-V耐震設計篇」,社團法人日本道路協會出版。
2. 日本地盤工學會 (2001),「地盤及基礎結構物的耐震設計」,中興工程科技研究發展基金會譯印。
3. 日本建築協會 (1988),「建築基礎構造設計指針」,社團法人日本建築協會。
4. 日本道路協會 (1996),「道路橋示方書•同解說-V耐震設計篇」。
5. 內政部營建署 (2005),「建築物耐震設計規範及解說」,營建雜誌社編印。
6. 交通部高速鐵路工程局 (1997),「高鐵橋樑基礎最佳化研究總報告」,財團法人台灣營建研究院研究報告。
7. 交通部高速鐵路工程局 (1997),「高鐵橋樑基礎最佳化研究,附冊E-單樁側向承載試驗」,財團法人台灣營建研究院研究報告。
8. 交通部 (2000),「港灣構造物設計基準─碼頭設計基準及說明」。
9. 王訓濤,周南山(1988),「承受側向力之樁基與土壤之互制作用」,地工技術雜誌,第24期,頁39-48。
10. 朱惠君 (2000),「側向荷重樁之非線性反應分析」,國立台灣大學博士論文。
11. 邱俊翔、楊鶴雄、陳正興 (2007),樁基礎側推分析樁材塑鉸設定之研究,台灣公共工程學刊,第三卷,第一期。
12. 邱俊翔、陳正興、楊鶴雄 (2008),「樁基礎非線性側推分析之樁材塑鉸設定方法」,國家地震工程研究中心研究報告。
13. 邱俊翔、陳正興、楊鶴雄 (2007),「樁頭受側向力作用之側推分析模式」,國家地震工程研究中心研究報告。
14. 邱俊翔 (2001),「基樁側向荷載行為之研究」,國立台灣大學博士論文。
15. 邱俊翔、陳正興(2000),「側向載重樁非線性變形反應之回歸分析」,中國土木水利工程學刊,第12卷,第3期,頁455-464。
16. 邱俊翔、楊鶴雄、陳正興 (2008),「樁-土系統非線性側推分析之塑鉸設定方法」,中華民國第九屆結構工程研討會,高雄,台灣。
17. 邱俊翔、楊鶴雄、陳正興 (2007),「樁基礎側推分析樁材塑鉸設定之研究」,第十二屆大地工程學術研究討論會,溪頭,台灣。
18. 陳正興、邱俊翔、黃俊鴻 (1998),「嘉義太保場鑄基樁之側向荷載試驗與分析」,中國力學期刊,第14卷,第2期,頁125-139。
19. 陳正興、邱俊翔、黃俊鴻 (1999),「預鑄混凝土樁側向荷載試驗與分析」,中國土木水利工程學刊,第11卷,第2期,頁231-241。
20. 鄧崇任、柴駿甫、廖文義、蘇晴茂、簡文郁、周德光 (2004),「耐震與性能設計規範研究(一)」,國家地震工程研究中心研究報告。
21. 賴瑞應、曾文傑、張道光、薛強、張景鐘、許文豪 (2005a),港灣構造物功能性設計法之研究(3/3),交通部運輸研究所。
22. 賴瑞應、賴聖耀、謝明志 (2005b),地震引致板樁式碼頭之變位量分析,交通部運輸研究所。
23. 羅俊雄、廖文義、簡文郁、鄧崇任、柴駿甫 (2001),「容量設計法應用於建築物耐震設計之探討」,地震工程學會,內政部建築研究所。
24. 費康、張健偉(2009),「ABAQUS在岩土工程中的應用」,中國水利水電出版社。
25. 蕭江碧、羅俊雄等人 (2002),「建築物耐震性能設計性能目標與相關項目研究」,內政部建築研究所研究報告MOIS912023。
26. ABAQUS/CAE User,s Manual, Version 6.11.
27. ABAQUS Analysis User,s Manual, , Version 6.11.
28. Applied Technology Council (1996), Seismic evaluation and retrofit of concrete buildings, Vol.1, ATC-40, Redwood City, C.A.
29. Caduto, Donald P. Foundation Design: Principles and Practices second ed., Prentice-Hall Inc., 2001.
30. Chang, Y.L. (1937), “Discussion on lateral pile-loading test by Feagin.” Transactions (ASCE); Paper No. 1959: 272-278.
31. Chen, C. Y. and Martin, G. R. (2001), “Effect of Embankment Slope on Lateral Response of Piles.” FLAC and Numerical Modeling in Geomechanics – 2001 (Proceedingsof the second International FLAC Conference, Lyon, France, October 2001). Billauxet al. (eds.). A.A. Belkema, Lisse, pp. 47-54.
32. Chow, Y. K. et al. (1998), “Case Histories of Statnamic Pile Load Tests”, Thirteenth Southeast Asian Geotechnical Conference, 16-20 November, 1998, Taipei, Taiwan, R.O.C. TA710.A1.S61z.
33. Chiou, J.S., Yang, H.H. and Chen, C.H. (2009), “Use of Plastic Hinge Model in Nonlinear Pushover Analysis of a Pile,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.9,1341-1346.
34. Federal Emergency Management Agency FEMA 273. (1997), NEHRP guidelines for the seismic rehabilitation of buildings, Washington, D.C.
35. Frank R., Shields D., and Domaschuk L. (1994), “The effects of creep on laterally loaded piles.” The Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), New Delhi, India, pp. 501.504.
36. Gabr, M. A., Borden, R. H. (1990). “Lateral Analysis of Piers Constructed on Slopes.”, Journal of Geotechnical Engineering, vol. 116 (12), pp 1831-1850.
37. Hetenyi, M. (1946). Beams on elastic foundations. University of Michigan Press, Ann Arbor, Michigan.
38. Ho-Hsiung Yang, Jiunn-Shyang Chiou and Cheng-Hsing Chen (2006), “Effects of SSI on the Design of Pile Foundation-Case Study.” The Nineteenth KKCNN Symposium on Civil Engineering, December 10-12, 2006, Kyoto, Japan.
39. International Navigation Association (PIANC/INA) (2001). Seismic Design Guidelines for Port Structures. Rotterdam: Balkema.
40. Ishihara, K. and Yoshimine, M.(1992), “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188.
41. Iwasaki, T., Arakawa, T., and Yokida, K., (1982) “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925-939.
42. Juirnarongrit, T. (2002). “Effect of diameter on the behavior of laterally loaded piles in weakly cemented sand.” Ph.D. thesis, Dept. of Structural Engineering, University of California San Diego, CA.
43. Jiunn-Shyang Chiou, Chi-HanChiang, Ho-HsiungYang, Shang-YiHsu, May–June (2011), “Developing fragility curves for a pile-supported wharf “, Soil Dynamics and Earthquake Engineering, Volume 31, Issues 5–6, Pages 830–840.
44. Ko, Y.Y., Yang, H.H., and Chen, C.H., (2010), “Seismic Fragility Analysis for Sheet Pile Wharves -Case Study of the Hualien Harbor in Taiwan”, Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, SAN DIEGO, CA , 6.05a.
45. Kramer, S.L., and Heavey, E.J. (1988), “Lateral load analysis of nonlinear piles,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 9, 1045-1049.
46. Lin et al, (2001). “Segmental unloading point method for interpretation of some statnamic tests result”, Southeast Asian Geotechnical Conference.
47. Lin, S.S., Liao, J.C., Yang, T.S., and Juang, C.H.(2002). ”Nonlinear response of single piles.” Geotechnical Engineering Journal., 32(3), 165-175.
48. Mander, J.B., Priestley, M.J.N., and Park, R. (1988). “Theoretical stress-strain Model for Confined Concrete,” Journal of the Structural Division, ASCE, Vo1.114, No.8, pp.1804-1826.
49. Mezazigh, S., and Levacher, D. (1998). “Laterally loaded piles in sand: slope effect on p-y reaction curves”, Canadian Geotechnical Journal, 35(3), 433-441.
50. Poulos, H.G. (1971a), “Behavior of laterally loaded piles: I. single piles,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, 711-731.
51. Poulos, H.G. (1971b), “Behavior of laterally loaded piles: II -group piles,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, 733-751.
52. Poulos, H.G., and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley and Sons, New York.
53. Priestley, M.J.N., Seible, F., and Calvi, G.M. (1996). Seismic design and retrofit of bridges, Wiley-Interscience, New York.
54. Reese, L. C., Cox, W. R., and Koop, F. D. (1974). “Analysis of laterally loaded piles in sand,” Proc. 6th Offshore Technology Conference, Paper 2080, Houston, Texas, pp. 473-483.
55. Reese, L.C., “Soil-structure interaction for piles under lateral loading,” 第一部份,深基礎承受軸向力與側向力之設計與電腦分析,財團法人台灣營建研究中心﹙王訓濤,周南山編,1994﹚。
56. Reese, L. C., and Van Impe, W. F. (2001). Single Piles and Pile Group under Lateral Loading. A. A. Balkema, Rotterdam, pp. 463.
57. Reese, L. C., Isenhower, W. M., Wang, S. T. (2006). Analysis and design of shallow and deep foundations, Wiley, New Jersey, USA.
58. Rollins, K. M., Land, J.K., and Gerber, T.M. (2005). “Measured and computed lateral response of a pile group in sand.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1, pp.103-114.
59. SAP2000 Version 8. (2002). Basic Analysis Reference, Computers & Structures, Inc., Berkeley, California, USA.
60. Scott, R. F. (1981), Foundation Analysis, Prentice-Hall International, Inc., London, 267-334.
61. Scott A. Ashford, Teerawut Juirnaronrit,(2005) “Push-over analyses of piles in laterally spreading soil”, Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, Geotechnical Special Publication No. 145, pp. 109-120.
62. San-Shyan Lin, Yu-Ju Tseng, Chen-Chia Chiang and C.L. Hung,(2005) “Damage of piles caused by lateral spreading-back study of three cases”, Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, Geotechnical Special Publication No. 145, pp. 121-133.
63. Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes.” Tokyo Institute of Technology.(in Japanese)
64. Tokimatsu, K., and Seed, H. B., (1987) “Evaluation of settlements in sands due to earthquake shaking.” Journal of Geotechnical Engineering Division, ASCE, Vol. 113, No. GT8, pp. 861-878.
65. Vesic, A. S., (1961) “Bending of beam resting on isotropic elastic solid.” Proceedings of the American Society of Civil Engineers, Vol. 87, No. SM2, 35-53.
66. Yang, H.H., Chiou, J.S., Chen, C.H. and Ko, Y.Y. (2009), “The Fragility Analysis for Pile-Supported Wharfs Using Capacity Spectrum Method”, Performance-Based Design in Earthquake Geotechnical Engineering- from Case History to Practice, Proc. of International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Jun. 15-18, 2009, Tsukuba, Japan, pp.1625-1632.
67. Yang, H.H., Ko, Y.Y., Chiou, J.S. and Chen, C.H. (2008), “Fragility Analysis Procedure of Pile-Supported Wharf Structure,” Proc. of the Twenty-First KKCNN Symposium on Civil Engineering, Oct. 27-28, 2008, Singapore.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58323-
dc.description.abstract基樁承受側向載重時,因土壤及樁材之非線性效應使得其反應呈現高度非線性,以往多以水平地盤進行研究與探討,而對於傾斜地盤的影響方面則相對很少,仍有許多課題值得研究。本研究之主要目的為分析與探討傾斜地盤中基樁受側向荷載作用之非線性反應,同時考慮土壤非線性效應與樁土互制關係,包括樁身與土壤之相互滑動與分離,以探討傾斜地盤對基樁與土壤反應的影響。
為了解傾斜地盤中單樁受側向荷載時土壤可提供的極限側向阻抗,本研究首先利用樁周土壤破壞土楔模式推導一般c-ψ土壤之極限側向阻抗評估公式,經與前人針對純凝聚性土壤、純非凝聚性土壤之研究結果比較驗證,顯示所得評估公式對於水平地盤、下邊坡及上邊坡情況均可適用。並定義坡度影響係數為傾斜地盤土壤側向極限阻抗對應水平地盤土壤側向極限阻抗之比值,用以評估凝聚性土壤、非凝聚性土壤及一般c-ψ土壤中,地盤坡度對土壤極限側向阻抗之影響。
為探討傾斜地盤中基樁受側向荷載作用之反應行為,本研究利用數值分析法進行模擬分析,所用程式為有限元素法ABAQUS程式,採半對稱之三維實體元素模型,土壤破壞準則採Mohr-Coulomb模式,分別針對地盤坡度為0⁰、10⁰、20⁰與30⁰的情況,進行自由樁頭條件之單樁非線性側推分析,除驗證本研究所推導土壤極限側向阻抗理論評估公式外,並根據所得樁頭容量曲線(P-Y曲線),探討地盤坡度對樁頭P-Y曲線之影響,包括容許側向荷載、0.01D割線勁度、0.1D割線勁度、降伏點與極限點等,評估地盤坡度所產生的折減效應,將其歸納為簡單折減公式供工程設計參考使用。
對於樁身與土壤之反應,則由數值分析得到的樁身側向變位,運用差分法推求所對應之彎矩及土壤反力分佈,建立樁頭附近土壤的p-y曲線,用以分析土壤彈簧勁度與土壤反力值隨所在深度之特性,並探討地盤坡度對土壤p-y曲線之0.01D割線勁度、降伏點與極限值的影響,也將0.01D割線勁度與極限值對地盤坡度的折減效應歸納為簡單公式。
在進行單樁之非線性側推分析時,本研究提出可同時考量基樁與土壤非線性之數值模式建立方法。考量溫克基礎模式,土壤採用非線性p-y曲線,對樁材非線性之模擬方面,除修正傳統ATC法中的塑性曲率定義,並推求估算塑性區最小範圍之理論公式,以及分佈塑鉸的佈設方式與數量,以正確模擬塑性區的發展情形。據此建立數值模式的側推分析結果與實體元素模式數值分析及現地試驗結果比較驗證,均獲得不錯的成果。
最後,以直樁式棧橋式碼頭為例,建立可同時考量地盤邊坡、土壤與基樁非線性以及樁土互制作用等影響的群樁溫克數值模式,依一般易損性分析程序進行側推分析、耐震性能評估、以及易損性曲線及其相關參數之建立,確認本研究所採用的分析方法與程序,可快速且方便的進行具群樁基礎結構物之耐震性能評估與易損性分析。
zh_TW
dc.description.abstractPile foundations are used to support a wide variety of structures. In many cases, lateral loads are often the critical factors considered in the design of piles. The response of piles subjected to lateral loading is highly nonlinear due to the inherent nonlinear behavior of soils and piles. In many practical situations, structures subjected to lateral loading are located near or in the slopes or embankments. But, the research to examine the effects of soil slope on lateral pile capacity is limited. Therefore, this study aims at the nonlinear analysis for lateral response of a pile on sloping ground.
To achieve the purpose, this study developed the analytical solution to estimate the ultimate soil resistance in the lateral loaded pile located in slope. The analytical solution is assumed passive failure wedge modal, and can be applied to normal type of soils. Furthermore, this study developed a simple, but rational, analytical model to simulate the behavior of single piles subjected to lateral loading. The analytical model adopted will be based on the Winkler hypothesis and p-y approach, which is commonly used in engineering applications. In this study, the non- linearity of the soil is simulated by applying nonlinear soil springs, while the nonlinearity of a pile is modeled by placing distributed plastic hinges in beam elements. The distributed plastic hinge model can completely capture the development process of plasticity in piles.
Finally, this study proposed the procedures of the fragility analysis for pile-supported wharf case. In modeling a wharf structure, the nonlinearity of the soil and the piles should be considered to account for their effects on the lateral response of the structure. And the proposed fragility analysis procedure can successfully establish the fragility curves of pile-supported wharf structures from illustrative examples.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:11:22Z (GMT). No. of bitstreams: 1
ntu-103-D91521030-1.pdf: 6338410 bytes, checksum: 275b045083dd769707b36a7bc5aab750 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝……….………………………………………………………………i
中文摘要…………………………………………………………………ii
Abstract…………………………………………………………………iv
第一章、緒論…………….……………………………………………1-1
1.1研究動機與目的……………………………………………………1-1
1.2研究範圍與方法……………………………………………………1-1
1.3論文章節與研究內容………………………………………………1-2
第二章、文獻回顧…………………………………………………….2-1
2.1側向極限阻抗評估法………………………………………………2-1
2.2側向荷載樁分析法…………………………………………………2-4
2.3邊坡對地盤反力係數之影響……………………………………2-12
2.4側推分析法與容量震譜法………………………………………2-14
第三章、樁周土楔之側向極限阻抗評估與地盤坡度之影響………3-1
3.1傾斜地盤中樁周土楔之側向極限阻抗理論推導……………….3-1
3.2凝聚性土壤中樁之側向極限阻抗與Reese法之驗證……………3-9
3.3非凝聚性土壤中樁之側向極限阻抗與Reese法之驗證………..3-11
3.4地盤坡度對極限側向阻抗之影響………………………………3-19
第四章、地盤坡度對單樁側推容量曲線之影響……………………4-1
4.1數值分析方法………………………………………………………4-1
4.2樁頭側推容量曲線…………………………………………………4-6
4.3地盤坡度對容量曲線之影響……………………………………4-13
第五章、地盤坡度對樁身與土壤反應之影響………………………5-1
5.1單樁受側向荷載之反應分析………………………………………5-1
5.2地盤坡度對土壤彈簧之影響………………………………………5-6
第六章、考量樁土非線性之數值分析模式…………………………6-1
6.1基樁斷面之彎矩塑鉸性質…………………………………………6-2
6.2埋置基樁塑性區域範圍之估算……………………………………6-9
6.3塑鉸佈設方式…………………………………………………6-13
6.4數值分析…………………………………………………………6-17
第七章、群樁基礎之側推分析-以棧橋式碼頭為例…………………7-1
7.1考量土壤與結構互制效應之易損分析程序………………………7-1
7.2實際應用分析案例………………………………………………7-10
第八章、結論與建議…………………………………………………8-1
8.1結論…………………………………………………………………8-1
8.2建議…………………………………………………………………8-4
參考文獻………………………………………………………………r-1
dc.language.isozh-TW
dc.subject側向荷載樁zh_TW
dc.subject傾斜地盤zh_TW
dc.subject極限側向阻抗zh_TW
dc.subject樁頭容量曲線zh_TW
dc.subject土壤p-y曲線zh_TW
dc.subjectlateral load pileen
dc.subjectslopeing grounden
dc.subjectultimate soil resistanceen
dc.subjectcapacity curve of pile headen
dc.subjectp-y curve of soilen
dc.title傾斜地盤中基樁側向荷載之非線性反應分析zh_TW
dc.titleNonlinear Analysis for Lateral Response of a Pile on Sloping Grounden
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee林三賢,林宏達,黃俊鴻,李洋傑,廖文義
dc.subject.keyword側向荷載樁,傾斜地盤,極限側向阻抗,樁頭容量曲線,土壤p-y曲線,zh_TW
dc.subject.keywordlateral load pile,slopeing ground,ultimate soil resistance,capacity curve of pile head,p-y curve of soil,en
dc.relation.page226
dc.rights.note有償授權
dc.date.accepted2014-02-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved