Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾顯雄(Shean-Shong Tzean)
dc.contributor.authorMin-Nan Tsengen
dc.contributor.author曾敏南zh_TW
dc.date.accessioned2021-06-16T08:11:03Z-
dc.date.available2014-03-21
dc.date.copyright2014-03-21
dc.date.issued2014
dc.date.submitted2014-03-03
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58312-
dc.description.abstract蟲生真菌被應用於生物防治工作已有數十年。然而,這些真菌在田間之應用成效並不穩定,其主要原因為環境逆境所造成,這些逆境包括紫外線幅射、極端溫度及乾燥。為解決此瓶頸,本研究由磚格孢菌 (Alternaria alternata) 中選殖出 dihydroxynaphthalene -黑色素 (DHN-melanin) 的生合成基因 (polyketide synthase、scytalone dehydratase及 1,3,8-trihydroxynaphthalene reductase) 並經由農桿菌 (Agrobacterium tumefaciens) 媒介轉殖(Agrobacterium-mediated transformation),將黑色素生合成基因轉殖進入不具黑色素生合成能力的昆蟲寄生真菌 - 黑殭菌 (Metarhizium anisopliae)。黑色素在黑殭菌轉殖株中的表現,利用分光光度計的方法、液相層析質譜 (LC/MS) 及共軛焦顯微鏡之觀察加以證明。此轉殖株與野生株相比較,對於環境逆境具有較佳的抗性,對於寄主昆蟲亦具有較高的致病力 (virulence)。然而,這些特性的相關機制仍不清楚,因此本研究經由生理及分生的途徑,探討其可能之機制。雖然轉殖株與野生株皆可侵染相同的寄主範圍,但在活體内 (in vivo) 及活體外 (in vitro) 的情況下,轉殖株的分生孢子發芽及產生附著器 (appressorium) 的速率及與產生附著器的數量皆明顯高於野生株。轉殖株對小菜蛾 (Plutella xylostella) 及黃條葉蚤 (Phyllotreta striolata) 的半致死時間 (LT50) 亦顯著的短於野生株。此外,轉殖株對活性氧 (reactive oxygen species, ROS) 的耐受能力較野生株來得高。在in vivo的情況下轉殖株可產生高於野生株40倍的orthosporin,並顯著的大量轉錄chitinase、protease及phospholipase之編碼基因。但轉殖株與野生株相比較之下,附著器的膨壓 (turgor pressure) 及殺蟲毒素destruxin A的產量則有些微下降。轉殖株對黑豆蚜 (Aphis craccivora)、小菜蛾 (Pl. xylostella)、黃條葉蚤 (Ph. striolata) 、銀葉粉蝨 (Bemisia argentifolii) 及東方果實蠅 (Bactrocera dorsalis) 具有高致病力,並具有在植物根部殖據的能力,使轉殖株於田間進行生物防治應用時,應具有較高之潛力。zh_TW
dc.description.abstractEntomopathogenic fungi have been used for biocontrol of insect pests for many decades. However, the efficacy of such fungi in field trials is often inconsistent, mainly due to environmental stresses, such as ultraviolet radiation, temperature extremes, and desiccation. To circumvent these hurdles, metabolic engineering of dihydroxynaphthalene (DHN)-melanin biosynthetic genes (polyketide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase) cloned from Alternaria alternata were transformed into the amelanotic entomopathogenic fungus Metarhizium anisopliae via Agrobacterium-mediated transformation. Melanin express in the transformant of M. anisopliae was verified by spectrophotometric methods, LC/MS and confocal microscopy. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant’s high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:11:03Z (GMT). No. of bitstreams: 1
ntu-103-D93633002-1.pdf: 3584658 bytes, checksum: de1d185d16b894803f35b259fe0a9ac6 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要……………………………………………………………… 1
Abstract……………………………………………………………… 3
Chapter 1 研究動機與研究架構…………………………………… 5
1. 前言 ……………………………………………………………… 5
2. 黑殭菌之應用瓶頸 ……………………………………………… 6
3. 黑色素的種類 …………………………………………………… 6
4. 黑色素之生物功能 ……………………………………………… 7
4.1. 黑色素對生物體的光保護功能 ……………………………… 7
4.2. 黑色素對病原菌之致病性影響 ……………………………… 8
4.3. 黑色素對細胞壁之保護 ……………………………………… 8
5. 黑色素之生合成途徑 …………………………………………… 8
6. 研究動機 ……………………………………………………… 11
7. 研究架構 …………………………………………………………11
7.1. 材料…………………………………………………………… 11
7.2. 實驗方法與架構……………………………………………… 11
8. 參考文獻………………………………………………………… 16
Chapter 2 Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering DHN-melanin biosynthesis genes ……………………………………………… 20
1. Introduction…………………………………………………… 20
2. Materials and methods…………………………………………22
2.1. Fungal cultures and shuttle vectors……………………22
2.2. Cloning and characterization of melanin biosynthesis genes …………………………………………………………………23
2.3. Transformation shuttle vector construction………… 25
2.4. Agrobacterium-mediated transformation and characterization of transformants…………………………… 27
2.5. Expression of melanin biosynthesis genes…………… 30
2.6. Q-PCR quantification of melanin biosynthesis gene transcripts in transformants……………………………………30
2.7. Verification of melanin and its precursors synthesized by the transformant……………………………………………… 31
2.8. Bioassay of transformant and wild-type sporulation capacity and virulence……………………………………………34
2.9. Anti-stress tolerance assay………………………………35
2.10.Statistics ……………………………………………………36
3. Results ………………………………………………………… 37
3.1. Cloning of the melanin biosynthesis genes of A. alternata…………………………………………………………… 37
3.2. Characteristics of M. anisopliae transformants 37
3.3. Verification of melanin in transformants ……… 39
3.4. Spectrophotometric analysis of melanins………… 40
3.5. Transformant virulence assay ……………………… 40
3.6. Transformant anti-stress assay …………………… 42
4. Discussion……………………………………………………… 44
5. References……………………………………………………… 53
6. Figures………………………………………………………… 61
Fig. 1……………………………………………………………… 61
Fig. 2……………………………………………………………… 62
Fig. 3……………………………………………………………… 63
Fig. 4……………………………………………………………… 64
Fig. 5……………………………………………………………… 65
Fig. 6……………………………………………………………… 66
Fig. 7……………………………………………………………… 67
Fig. 8……………………………………………………………… 68
7. Tables…………………………………………………………… 69
Table 1……………………………………………………………… 69
Table 2……………………………………………………………… 71
Table 3……………………………………………………………… 72
Table 4……………………………………………………………… 73
Table 5……………………………………………………………… 74
Table 6……………………………………………………………… 75
Table 7……………………………………………………………… 76
Chapter 3 Mechanisms Relevant to the Enhanced Virulence of a Dihydroxynaphthalene-Melanin Metabolically Engineered Entomopathogen…………………………………………………… 77
1. Introduction…………………………………………………… 77
2. Materials and Methods ……………………………………… 81
2.1. Inoculum preparation……………………………………… 81
2.2. Insect host range assay ………………………………… 82
2.3. Assays of conidial germination and appressorium formation in vitro…………………………………………………83
2.4. Assays of conidial germination and appressorium formation in vivo………………………………………………… 84
2.5. Virulence assay …………………………………………… 85
2.6. Appressorial turgor pressure assay…………………… 86
2.7. Analysis of fungal damage by exogenous H2O2 or nitric oxide………………………………………………………………… 86
2.8. Effect of melanin on the virulence of transformant and wild type M. anisopliae………………………………………… 87
2.9. Analysis of destruxin and relevant secondary metabolites………………………………………………………… 88
2.10 Differential expression of the cuticle hydrolytic enzymes genes in vivo…………………………………………… 89
2.11. Colonization and survival of transformant and wild type M. anisopliae on the rhizoplane…………………………90
2.12. Statistics……………………………………………………92
3. Results……………………………………………………………92
3.1. Insect host range……………………………………………92
3.2. Conidial germination and appressorial differentiation in vitro and in vivo………………………………………………93
3.3. Appressorium turgor pressure…………………………… 95
3.4. Tolerance of the transformant and wild type to H2O2 and nitric oxide stress……………………………………………… 95
3.5. Production of destruxin and allied compounds in transformant and wild type M. anisopliae……………………96
3.6. Enhanced expression of cuticle hydrolytic enzymes encoding genes………………………………………………………97
3.7. Effect of melanin biosynthesis inhibition on the median lethal time (LT 50) of the insect hosts…………………… 98
3.8. Colonization and survival of transformant and wild type M. anisopliae on the rhizoplane……………………………… 98
4. Discussion……………………………………………………… 99
4.1. Non-relevance of melanin biosynthesis to the build-up of appressorial turgor pressure in the M. anisopliae transformant MA05-169…………………………………………… 99
4.2. Melanin acts as a key virulence factor in the M. anisopliae MA05-169 transformant…………………………… 101
4.3. Correlation of enhanced germination and appressorium formation abilities with the increased virulence of the M. anisopliae transformant MA05-169…………………………… 103
4.4. Secondary metabolites produced by transformant and wild type M. anisopliae……………………………………………… 106
5. References …………………………………………………… 110
6. Figures………………………………………………………… 121
Fig. 1……………………………………………………………… 121
Fig. 2……………………………………………………………… 122
Fig. 3……………………………………………………………… 123
Fig. 4……………………………………………………………… 124
Fig. 5……………………………………………………………… 125
Fig. 6……………………………………………………………… 126
Fig. 7……………………………………………………………… 127
Fig. 8……………………………………………………………… 128
7. Tables ………………………………………………………… 129
Table 1……………………………………………………………… 129
Table 2……………………………………………………………… 130
Table 3……………………………………………………………… 131
Table 4……………………………………………………………… 132
Table 5……………………………………………………………… 133
Table 6……………………………………………………………… 134
Table 7……………………………………………………………… 135
Chapter 4 結論與未來展望 ……………………………………… 136
Reference…………………………………………………………… 137
dc.language.isoen
dc.title應用黑色素基因工程提升蟲生真菌對逆境之耐受能力、致病力及其相關機制zh_TW
dc.titleEnhancing the stress tolerance virulence and relevant mechanism of an entomopathogen by metabolic engineering dihydroxynaphthalene (DHN)-melanin biosynthesis genesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊平世,張雅君,林乃君,鍾嘉綾
dc.subject.keyword黑殭菌,黑色素,逆境,紫外線,致病力,小菜蛾,發芽率,活性氧,zh_TW
dc.subject.keywordMetarhizium anisopliae,melanin,virulence,germination rate,reactive oxygen species,germination rate,reactive oxygen species,en
dc.relation.page137
dc.rights.note有償授權
dc.date.accepted2014-03-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved