Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58295
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳逸昆(I-Kun Chen)
dc.contributor.authorYuan-Chieh Chenen
dc.contributor.author陳遠介zh_TW
dc.date.accessioned2021-06-16T08:10:34Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation[1] L. Arkeryd and A. Nouri. l 1 solutions to the stationary boltzmann equation in
a slab. Annales de la Facult´ e des sciences de Toulouse : Math´ ematiques, Ser.
6, 9(3):375–413, 2000.
[2] C. Cercignani. The Boltzmann Equation and Its Applications. Applied Mathe-
matical Sciences. Springer New York, 2012.
[3] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute
Gases. Springer, 2014.
[4] R. Duan, F. Huang, Y. Wang, and Z. Zhang. Effects of soft interaction and
non-isothermal boundary upon long-time dynamics of rarefied gas. Archive for
Rational Mechanics and Analysis, 234(2):925–1006, Nov 2019.
[5] R. Esposito, Y. Guo, C.-G. Kim, and R. Marra. Non-isothermal boundary
in the boltzmann theory and fourier law. Communications in Mathematical
Physics, 323:177–239, 2013.
[6] R. Esposito, J. L. Lebowitz, and R. Marra. Hydrodynamic limit of the station-
ary boltzmann equation in a slab. Commun. Math. Phys., 160, 1994.
[7] R. Esposito, J. L. Lebowitz, and R. Marra. The navier-stokes limit of stationary
solutions of the nonlinear boltzmann equation. J. Stat. Phys., 78, 1995.
[8] L. Evans. Partial Differential Equations. Graduate studies in mathematics.
American Mathematical Society, 2010.
[9] J. P. Guiraud. Probleme aux limites int´ erieur pour l’´ equation de boltzmann
lin´ eaire. J. de M´ ec., 9, 1970.
[10] J. P. Guiraud. Probleme aux limites int´ erieur pour l’´ equation de boltzmann en
r´ egime stationnaire, faiblement non lin´ eaire. J. de M´ ec., 11, 1972.
[11] Y. Guo. Decay and continuity of the boltzmann equation in bounded domains.
Archive for Rational Mechanics and Analysis, 197:713–809, 2010.
[12] I. Vidav. Spectra of perturbed semigroups with applications to transport theory.
J. Math. Anal. Appl., 30, 1970.
[13] S.-H. Yu. Stochastic formulation for the initial-boundary value problems of the
boltzmann equation. Archive for Rational Mechanics and Analysis, 192:217–
274, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58295-
dc.description.abstract波茲曼方程式在研究熱傳導與稀薄氣體的領域中有著重要的地位。本文探討
穩態波茲曼方程式在擴散反射邊界條件下解的存在性,並討論當邊界溫度不為定
值的情形。我們給出一個直接的方法去估計線性化波茲曼算子的核空間,並藉由
此證明了L 2 空間的解存在性與估計。我們也推廣了傳統的特徵線方法,討論了與
邊界多次碰撞的情形,並證明了L ∞ 空間的解存在性與估計。最後,我們證明了
當邊界的溫度與均衡溫度差距小的情形下,穩態波茲曼方程式在邊界非常溫的擴
散反射邊界條件下解的存在性。
zh_TW
dc.description.abstractIn this thesis, we consider the steady Boltzmann equation with diffuse reflection
boundary condition. We study the case of hard potential and the non-isothermal
boundary. We prove the existence and the uniqueness of solution and their estimate
in both L 2 and L ∞ space.
In L 2 the Theorem, we provide a direct way to estimate the kernel of the
linearized Boltzmann operator. In the L ∞ Theorem, we introduce the stochastic
cycles and prove the estimate that is valid for both steady and dynamic cases. And
we provide a iteration scheme for the non-isothermal boundary temperature to prove
the existence result and the L ∞ estimate when the wall temperature do not oscillate
too much.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:10:34Z (GMT). No. of bitstreams: 1
U0001-1407202002121500.pdf: 1788495 bytes, checksum: f663cfea7f2d8febd5068f8e59147cb4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口 試 委 員 會 審 定 書 i
誌 謝 ii
中 文 摘 要 iii
Abstract 英 文 摘 要 iv
1 Introduction 1
2 Preliminaries 7
2.1 Notations and Background . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Some Basic Properties and Lemmas . . . . . . . . . . . . . . . . . . . 8
3 L 2 Estimate on Stationary Linearized Boltzmann Equation 10
3.1 Construction of Solution for Damping Transport Equation . . . . . . 10
3.2 Construction of Solution for the Equation with Cut-off Linearized
Boltzmann Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Key Estimate for L 2 Estimate . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Proof of the L 2 Estimate Theorem . . . . . . . . . . . . . . . . . . . 20
4 L ∞ Estimate on Stationary Linearized Boltzmann Equation 22
4.1 Estimate on Integration on Stochastic Cycles . . . . . . . . . . . . . . 23
4.2 Iteration Scheme for L ∞ Case . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Key Estimate for L ∞ Case . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Proof of the L ∞ Estimate Theorem . . . . . . . . . . . . . . . . . . . 33
5 Existence and L ∞ Estimate for Non-isothermal Boundary 38
5.1 Iteration for Non-isothermal Boundary . . . . . . . . . . . . . . . . . 38
5.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . 38
6 Conclusion 42
Reference 43
dc.language.isoen
dc.subject波茲曼方程zh_TW
dc.subject擴散反射邊界條件zh_TW
dc.subject非恆溫邊界zh_TW
dc.subject穩態問題zh_TW
dc.subject線性化波茲曼方程zh_TW
dc.subjectBoltzmann Equationen
dc.subjectDiffuse Reflection Boundary Conditionen
dc.subjectNon-isothermal Boundaryen
dc.subjectSteady Problemen
dc.subjectLinearized Boltzmann Equationen
dc.title穩態波茲曼方程在擴散反射邊界條件下解的存在性zh_TW
dc.titleExistence of Solution for Stationary Boltzmann Equation with Diffuse Reflection Boundary Conditionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee夏俊雄(Chun-Hsiung Hsia),陳俊全(Chiun-Chuan Chen)
dc.subject.keyword波茲曼方程,擴散反射邊界條件,非恆溫邊界,穩態問題,線性化波茲曼方程,zh_TW
dc.subject.keywordBoltzmann Equation,Diffuse Reflection Boundary Condition,Non-isothermal Boundary,Steady Problem,Linearized Boltzmann Equation,en
dc.relation.page43
dc.identifier.doi10.6342/NTU202001493
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-1407202002121500.pdf
  未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved