Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(SHWU-JEN LIAW)
dc.contributor.authorHong-Han Chenen
dc.contributor.author陳弘翰zh_TW
dc.date.accessioned2021-06-16T08:10:14Z-
dc.date.available2020-08-27
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-07-28
dc.identifier.citation參考文獻
1. Warren, J.W., Tenney, J.H., Hoopes, J.M., Muncie, H.L. Anthony, W.C. A Prospective Microbiologic Study of Bacteriuria in Patients with Chronic Indwelling Urethral Catheters. The Journal of Infectious Diseases 146, 719-723 (1982).
2. Mobley, H.L. et al. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infection and Immunity 64, 5332-5340 (1996).
3. Li, X., Johnson, D.E. Mobley, H.L. Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infection and immunity 67, 2822-2833 (1999).
4. Bahrani, F.K. et al. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infection and Immunity 62, 3363-3371 (1994).
5. Silverblatt, F.J. Ofek, I. Influence of Pili on the Virulence of Proteus mirabilis in Experimental Hematogenous Pyelonephritis. The Journal of Infectious Diseases 138, 664-667 (1978).
6. Mobley, H.L., Island, M.D. Hausinger, R.P. Molecular biology of microbial ureases. Microbiological Reviews 59, 451-480 (1995).
7. Drechsel, H., Thieken, A., Reissbrodt, R., Jung, G. Winkelmann, G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. Journal of Bacteriology 175, 2727-2733 (1993).
8. Walker, K.E., Moghaddame-Jafari, S., Lockatell, C.V., Johnson, D. Belas, R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Molecular Microbiology 32, 825-836 (1999).
9. Braun, V. Focareta, T. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18, 115-158 (1991).
10. Mobley, H.L., Chippendale, G.R., Swihart, K.G. Welch, R.A. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infection and Immunity 59, 2036-2042 (1991).
11. Armbruster, C.E., Mobley, H.L.T. Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 8 (2018).
12. Alamuri, P. Mobley, H.L. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol 68, 997-1017 (2008).
13. Jacob-Dubuisson, F., Mechaly, A., Betton, J.-M. Antoine, R. Structural insights into the signalling mechanisms of two-component systems. Nature Reviews Microbiology 16, 585-593 (2018).
14. De Wulf, P. Lin, E.C. Cpx two-component signal transduction in Escherichia coli: excessive CpxR-P levels underlie CpxA* phenotypes. J Bacteriol 182, 1423-1426 (2000).
15. Snyder, W.B., Davis, L.J., Danese, P.N., Cosma, C.L. Silhavy, T.J. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177, 4216-4223 (1995).
16. Simpson, B.W. Trent, M.S. Emerging Roles for NlpE as a Sensor for Lipoprotein Maturation and Transport to the Outer Membrane in Escherichia coli. mBio 10 (2019).
17. Danese, P.N. Silhavy, T.J. The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev 11, 1183-1193 (1997).
18. DiGiuseppe, P.A. Silhavy, T.J. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185, 2432-2440 (2003).
19. Danese, P.N., Snyder, W.B., Cosma, C.L., Davis, L.J. Silhavy, T.J. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 9, 387-398 (1995).
20. Dorel, C., Lejeune, P. Rodrigue, A. The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157, 306-314 (2006).
21. Schaffer, J.N., Norsworthy, A.N., Sun, T.T. Pearson, M.M. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc. Natl. Acad. Sci. U. S. A. 113, 4494-4499 (2016).
22. Hyre, A.N., Kavanagh, K., Kock, N.D., Donati, G.L. Subashchandrabose, S. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infection and immunity 85, e01041-01016 (2017).
23. German, N., Doyscher, D. Rensing, C. Bacterial killing in macrophages and amoeba: do they all use a brass dagger? Future Microbiol 8, 1257-1264 (2013).
24. May, K.L., Lehman, K.M., Mitchell, A.M. Grabowicz, M. A Stress Response Monitoring Lipoprotein Trafficking to the Outer Membrane. mBio 10 (2019).
25. Danese, P.N. Silhavy, T.J. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 180, 831-839 (1998).
26. Konieczna, I. et al. Bacterial urease and its role in long-lasting human diseases. Current protein peptide science 13, 789-806 (2012).
27. Li, Y. et al. Absence of TolC Impairs Biofilm Formation in Actinobacillus pleuropneumoniae by Reducing Initial Attachment. PLoS One 11, e0163364 (2016).
28. López, C., Checa, S.K. Soncini, F.C. CpxR/CpxA Controls scsABCD Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology 200, e00126-00118 (2018).
29. Wu, J., Li, Y., Cai, Z. Jin, Y. Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol 80, 4108-4113 (2014).
30. Tsai, Y.-L., Chien, H.-F., Huang, K.-T., Lin, W.-Y. Liaw, S.-J. cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Scientific Reports 7, 7282 (2017).
31. Jung, C.J., Hsu, R.B., Shun, C.T., Hsu, C.C. Chia, J.S. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis. Infect Immun 85 (2017).
32. Yokota, K. Oguma, K. IgA protease produced by Streptococcus sanguis and antibody production against IgA protease in patients with Behcet's disease. Microbiol Immunol 41, 925-931 (1997).
33. Horng, Y.T. et al. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect 51, 174-183 (2018).
34. Malik, A. et al. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microbiol 69, 6056-6063 (2003).
35. Lu, P. et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Research 23, 635 (2013).
36. de Lorenzo, V., Herrero, M., Jakubzik, U. Timmis, K.N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568-6572 (1990).
37. Schweizer, H.P. Hoang, T.T. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158, 15-22 (1995).
38. Lima, B.P., Lennon, C.W., Ross, W., Gourse, R.L. Wolfe, A.J. In vitro evidence that RNA Polymerase acetylation and acetyl phosphate-dependent CpxR phosphorylation affect cpxP transcription regulation. FEMS Microbiol Lett 363, fnw011 (2016).
39. Bruna, R.E., Molino, M.V., Lazzaro, M., Mariscotti, J.F. García Véscovi, E. CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation. Journal of Bacteriology 200, e00006-00018 (2018).
40. Akatsuka, H., Binet, R., Kawai, E., Wandersman, C. Omori, K. Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. J Bacteriol 179, 4754-4760 (1997).
41. Schaffer, J.N. Pearson, M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr 3 (2015).
42. Baker, P. et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Science Advances 2, e1501632 (2016).
43. Thomas, V.C., Thurlow, L.R., Boyle, D. Hancock, L.E. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190, 5690-5698 (2008).
44. Berne, C., Ducret, A., Hardy, G.G. Brun, Y.V. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol Spectr 3 (2015).
45. Ibáñez de Aldecoa, A.L., Zafra, O. González-Pastor, J.E. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Frontiers in microbiology 8, 1390-1390 (2017).
46. Das, T., Sharma, P.K., Busscher, H.J., van der Mei, H.C. Krom, B.P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76, 3405-3408 (2010).
47. Watters, C., Fleming, D., Bishop, D. Rumbaugh, K.P. Chapter Seven - Host Responses to Biofilm, in Progress in Molecular Biology and Translational Science, Vol. 142. (eds. M. San Francisco B. San Francisco) 193-239 (Academic Press, 2016).
48. Hirano, Y., Hossain, M.M., Takeda, K., Tokuda, H. Miki, K. Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure 15, 963-976 (2007).
49. Rocha, S.P.D. et al. Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. Pathogens and Disease 51, 319-326 (2007).
50. Basson, A., Flemming, L.A. Chenia, H.Y. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial ecology 55, 1-14 (2008).
51. Gu, W., Farhan Ul Haque, M. Semrau, J.D. Characterization of the role of copCD in copper uptake and the ‘copper-switch’ in Methylosinus trichosporium OB3b. FEMS Microbiology Letters 364 (2017).
52. Viala, J.P. et al. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One 6, e22397 (2011).
53. Kumar, S., Tiwari, V. Doerrler, W.T. Cpx-dependent expression of YqjA requires cations at elevated pH. FEMS Microbiol Lett 364 (2017).
54. Alamuri, P., Eaton, K.A., Himpsl, S.D., Smith, S.N. Mobley, H.L. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect Immun 77, 632-641 (2009).
55. Gouran, H. et al. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa. Sci Rep 6, 31098 (2016).
56. Arenas, J., Nijland, R., Rodriguez, F.J., Bosma, T.N. Tommassen, J. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the alpha-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol 87, 254-268 (2013).
57. Furlong, E.J. et al. Disulfide isomerase activity of the dynamic, trimeric Proteus mirabilis ScsC protein is primed by the tandem immunoglobulin-fold domain of ScsB. J Biol Chem 293, 5793-5805 (2018).
58. Thomassin, J.L. et al. The CpxRA two-component system is essential for Citrobacter rodentium virulence. Infect Immun 83, 1919-1928 (2015).
59. Cao, Q. et al. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance. Microbiological research 206, 177-185 (2018).
60. Armbruster, C.E. et al. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS pathogens 13, e1006434 (2017).
61. Debnath, I. et al. The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 81, 1450-1459 (2013).
62. Humphreys, S. et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 72, 4654-4661 (2004).
63. Slamti, L. Waldor, M.K. Genetic analysis of activation of the Vibrio cholerae Cpx pathway. J Bacteriol 191, 5044-5056 (2009).
64. Spinola, S.M. et al. Activation of the CpxRA system by deletion of cpxA impairs the ability of Haemophilus ducreyi to infect humans. Infect Immun 78, 3898-3904 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58283-
dc.description.abstract  奇異變形桿菌為格蘭氏陰性尿道致病菌,特別是長期使用導尿管之病患身上,常造成伺機性感染。CpxAR是一個雙組成系統,CpxA接收外界訊息後,會磷酸化CpxR而調控下游基因表現,我們分析cpxA及cpxR突變株的表現型。結果發現cpxA突變株不影響其表現型,但cpxR突變株其生物膜生成能力、抵抗銅、H2O2、酸性及鹼性環境能力、在巨噬細胞的存活率及老鼠colonization皆下降。
  我們之前發現zapABCD和生物膜生成有關,此operon encodes IgA蛋白酶 (ZapA)、type I secretion system (ZapBCD); 1-2.5 mM銅會促進 P. mirabilis生物膜生成;而銅已知會活化CpxAR。此研究我們發現1 mM銅會活化CpxR增加zapABCD表現,而ZapBCD 和exopolysaccharide及eDNA等黏附因子的分泌皆有關,故可能影響initial adhesion而影響Cpx活化。而zapD及cpxR突變株其Mrp fimbriae (mrpA)的表現量皆下降,因而影響autoaggregation及細胞黏附能力。接著分析H2O2及銅的抵抗能力,我們發現0.1 mM 銅會活化CpxR而增加scsABCD,文獻報導此operon與H2O2及銅的抵抗能力有關,我們發現scsA突變會影響H2O2抵抗能力,但scsBCD突變不影響銅的抵抗能力。H2O2會使cpxR及scsA mRNA表現量上升,並且確認0.1 mM 銅是透過CpxR活化scsA而使細菌對H2O2抵抗能力上升。另外我們發現1 mM銅會活化CpxR而增加copCD表現, CopCD參與銅的運送,文獻報導其與抗銅的能力有關。此外CpxR會調控gadBC而影響細菌的抗酸能力,10 mM glutamate或glutamine會提高細菌抗酸能力,此能力有利於尿素酶活性。我們發現在酸性環境下, GadBC可將medium去酸化,促進尿素酶活性,進而影響細菌尿結石生成。最後我們發現鹼性環境會活化Cpx而增加YqjA (離子通道蛋白) 表現,此蛋白質已被報導與抵抗鹼性能力有關,並發現在鹼性環境下,Cpx也會調控P. mirabilis特有的重要毒力因子cytotoxin Pta。    
  在本次研究中,Cpx在抵抗銅、H2O2、酸性及鹼性環境能力、生物膜生成及Pta表現都扮演重要的角色,因而能影響在巨噬細胞的存活率及老鼠colonization。
zh_TW
dc.description.abstract  Proteus mirabilis, a gram negative and frequent uropathogen, often casuses opportunistic infection especially in patents with long-term use of urinary catheters. CpxAR is a two-compoenet system. When CpxA responds to environmental cues, it will kinase CpxR to regulate downstream genes. We analyzed the phenotypes of cpxA and cpxR mutants. We found that cpxA mutant didn’t have any impact, but cpxR mutant had significantly lower biofilm forming ability, the resistance to copper, H2O2, acid, and alkaline, survival in macrophage and colonization in mice.
  We have found zapABCD related to biofilm forming. ZapABCD is an operon encoding IgA protease (ZapA) and type I secretion (ZapBCD). Also, wild type had better biofilm forming ability in 1-2.5 mM copper. As is known, copper could activate CpxAR. In this study, we found CpxR could be induced in 1 mM copper to increase the expression of zapABCD related to adhesion factors such as exopolysaccharide and eDNA which might influence the activation of Cpx. In addition, the expression of mrpA in zapD and cpxR mutants was lower, which influenced the ability of autoaggregation and cell adhesion. Second, we analyzed the resistance to H2O2 and copper. We found CpxR could be induced in 0.1 mM copper to increase the expression of scsABCD. According to another study, the operon was related to the resistance to H2O2 and copper. We found scsA mutant had significantly lower the resistance to H2O2, but scsBCD mutant had no impact on the resistance to copper. The expression of cpxR and scsA could be promoted in 30 mM H2O2. We also confirmed the pathway that wild type had better the resistance to H2O2 in 0.1 mM copper was based on the activation of CpxR in 0.1 mM copper to enhance the expression of scsA. Additionally, CpxR could be induced in 1 mM copper to increase the expression of copCD involved in copper transporter and the resistance to copper. What’s more. CpxR could regulate gadBC to influence the resistance to acid. It could also improve the resistance to acid in 10 mM glutamate and glutamine, which had a great benefit to urease activity. In acid, GadBC could deacidify the medium and promote urease activity to influence urinary stone. Last, in alkaline, we found Cpx could be induced to regulate YqjA and cytotoxin Pta respectively related to the resistance to alkaline and the important virulence factor in P. mrirabilis.
  In this study, Cpx plays an important role in the resistance to copper, H2O2, acid, and alkaline, biofilm forming ability, and Pta to influence survival in macrophage and colonization in mouse.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:10:14Z (GMT). No. of bitstreams: 1
U0001-1407202011134600.pdf: 4719928 bytes, checksum: 4bcc0bba6e4918a4992fe707ccdc63ef (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
致謝 i
目錄 ii
摘要 vi
第一章 緒論 1
第一節 奇異變形桿菌 (Proteus mirabilis) 介紹 1
第二節 Two component system及Cpx的介紹 4
第三節 研究動機與目的 5
第二章 實驗設計、材料與方法 6
第一節 實驗設計 6
第二節 實驗材料 7
第三節 分析毒力因子及表現型 9
第四節 建築質體方法 18
第五節 基因表達 32
第三章 實驗結果 34
第一節 P. mirabilis Cpx特性及表現型分析 34
第二節 在銅環境下,Cpx對生物膜生成能力之分析 38
第三節 在銅環境下,Cpx對H2O2及銅的抵抗能力之分析 45
第四節 酸性抵抗能力及其他毒力因子之分析 52
第五節 討論與結論 59
第四章 表 64
參考文獻……………………………………………………………………………..69
附錄……………………………………………………………………………..……74
期刊發表及得獎紀錄………………………………………………………..………86

圖目錄
圖一、Proteus mirabilis之Cpx示意圖 34
圖二、cpxA及cpxR突變不影響生長、運動性及尿素酶活性 35
圖三、cpxR突變影響生物膜生成及抵抗壓力的能力 36
圖四、cpxR突變影響抵抗巨噬細胞毒殺的能力及老鼠colonization 37
圖五、在銅環境下,細菌的生物膜生成變高 38
圖六、zapABCD之蛋白質比對及transcriptome分析 39
圖七、銅活化CpxR而調控CpxR regulon, zapABCD, cpxR , and cpxP 40
圖八、cpxR、zapA及zapD突變影響生物膜生成能力 41
圖九、突變株其IgA蛋白酶活性、eDNA及EPS分泌降低 42
圖十、cpxR及zapD突變株其纖毛表現降低 43
圖十一、銅促進H2O2抵抗能力 45
圖十二、銅活化CpxR而調控scsABCD 46
圖十三、scsA過度表現促進H2O2抵抗能力 47
圖十四、scsA及scsBCD突變株建構 48
圖十五、scsA突變影響H2O2抵抗能力及抵抗巨噬細胞毒殺的能力 49
圖十六、銅活化CpxR而調控copCD 50
圖十七、Cpx調控gadBC 52
圖十八、胺基酸影響酸性抵抗能力 53
圖十九、gadBC突變株建構 54
圖二十、gadBC突變影響酸性抵抗能力及抵抗巨噬細胞毒殺的能力 55
圖二十一、cpxR及gadBC突變影響鹼化能力、尿素酶活性及尿結石生成 56
圖二十二、在鹼性環境下,Cpx會活化而調控yqjA及pta 58
圖二十三、Cpx調控的基因及在泌尿道感染扮演的角色 63

表目錄
表一、實驗中所使用的菌株及質體 64
表二、實驗中所使用的引子 66
表三、人工尿成分 67
表四、不同細菌其Cpx突變株表現 68

附錄目錄
附錄一、P. mirabilis致病因子 74
附錄二、P. mirabilis表面移行現象 75
附錄三、E. coli中Cpx的調控 76
附錄四、NlpE在錯誤位置堆積或結構的改變而活化Cpx 77
附錄五、cpxR reporter in cpxA 79
附錄六、EMSA 79
附錄七、在不同pH值環境下的尿素酶活性 79
附錄八、E. coli中抗酸的機制 80
附錄九、Scs與Dsb蛋白功能相似 81
附錄十、Cpx調控T6SS effector operon 83
附錄十一、突變株建構流程 84
附錄十二、Confocal顯示cpxR及zapD突變株其生物膜生成能力下降 85
dc.language.isozh-TW
dc.subject奇異變形桿菌zh_TW
dc.subject毒力因子zh_TW
dc.subjectCpxAR雙組成系統zh_TW
dc.subjectgadBCen
dc.subjectCpxAR two-component systemen
dc.subjectvirulence factoren
dc.subjectzapABCDen
dc.subjectscsABCDen
dc.subjectProteus mirabilisen
dc.title尿道致病性奇異變形桿菌中CpxAR調控致病因子之研究zh_TW
dc.titleRegulation of virulence expression by CpxAR two-component system in uropathogenic Proteus mirabilisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱浩傑(HAO-CHIEH CHIU),楊翠青(Tsuey-Ching Yang)
dc.subject.keyword奇異變形桿菌,CpxAR雙組成系統,毒力因子,zh_TW
dc.subject.keywordProteus mirabilis,CpxAR two-component system,virulence factor,zapABCD,scsABCD,gadBC,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202001499
dc.rights.note有償授權
dc.date.accepted2020-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1407202011134600.pdf
  未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved