Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorI-Chen Linen
dc.contributor.author林宜蓁zh_TW
dc.date.accessioned2021-06-16T08:09:56Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citation1.Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89.
2.Foris, L. and J. Snowden, Proteus Mirabilis Infections, in StatPearls. 2017, StatPearls Publishing StatPearls Publishing LLC.: Treasure Island (FL).
3.Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum, 2015. 3(5): p. 10.1128/microbiolspec.UTI-0017-2013.
4.Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54.
5.Tsai, Y.L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Sci Rep, 2017. 7(1): p. 7282.
6.Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42.
7.Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5.
8.Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505.
9.Senior, B.W., L.M. Loomes, and M.A. Kerr, The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol, 1991. 35(4): p. 203-7.
10.Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33.
11.Alamuri, P. and H.L. Mobley, A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol, 2008. 68(4): p. 997-1017.
12.Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003. 57: p. 249-73.
13.Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38.
14.Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5.
15.Deutscher, J., C. Francke, and P.W. Postma, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev, 2006. 70(4): p. 939-1031.
16.Pfluger-Grau, K. and B. Gorke, Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol, 2010. 18(5): p. 205-14.
17.Muriel-Millan, L.F., et al., Unphosphorylated EIIA(N)(tr) induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol, 2017. 104(2): p. 197-211.
18.Reitzer, L. and B.L. Schneider, Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev, 2001. 65(3): p. 422-44, table of contents.
19.BS, P., et al., Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem. , 1995. 270(9): p. 4822-4839.
20.Reizer, J., et al., A Proposed Link between Nitrogen and Carbon Metabolism Involving Protein-Phosphorylation in Bacteria. Protein Science, 1992. 1(6): p. 722-726.
21.Choi, J., et al., Programmed Delay of a Virulence Circuit Promotes Salmonella Pathogenicity. MBio, 2019. 10(2).
22.Luttmann, D., et al., Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol, 2009. 72(4): p. 978-94.
23.Segura D, E.G., Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-beta-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol., 1998. 180(18): p. 4790-8.
24.Noguez, R., et al., Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol, 2008. 15(4): p. 244-54.
25.Lee, C.R., et al., Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol, 2005. 58(1): p. 334-44.
26.Lee, C.R., et al., Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc Natl Acad Sci U S A, 2007. 104(10): p. 4124-9.
27.Lee, C.R., et al., Potassium mediates Escherichia coli enzyme IIA(Ntr) -dependent regulation of sigma factor selectivity. Mol Microbiol, 2010. 78(6): p. 1468-83.
28.Choi, J., et al., Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc Natl Acad Sci U S A, 2010. 107(47): p. 20506-11.
29.Choi, S., et al., The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages. Nat Commun, 2019. 10(1): p. 3326.
30.Luttmann, D., Y. Gopel, and B. Gorke, The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol, 2012. 86(1): p. 96-110.
31.Hsieh, Y.J. and B.L. Wanner, Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol, 2010. 13(2): p. 198-203.
32.Sultan, S.Z., A.J. Silva, and J.A. Benitez, The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol Lett, 2010. 302(1): p. 22-31.
33.Bertrand, N., et al., Increased Pho regulon activation correlates with decreased virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun, 2010. 78(12): p. 5324-31.
34.Epstein, W., The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System. J Bacteriol, 2016. 198(2): p. 212-20.
35.Luttmann, D., Y. Gopel, and B. Gorke, Cross-Talk between the Canonical and the Nitrogen-Related Phosphotransferase Systems Modulates Synthesis of the KdpFABC Potassium Transporter in Escherichia coli. J Mol Microbiol Biotechnol, 2015. 25(2-3): p. 168-77.
36.O'Loughlin, J.L., et al., Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun, 2010. 78(2): p. 773-82.
37.Alegado, R.A., et al., The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol, 2011. 13(10): p. 1618-37.
38.Nicolle, L.E., Catheter-related urinary tract infection. Drugs Aging, 2005. 22(8): p. 627-39.
39.Epstein, W. and M. Davies, Potassium-dependant mutants of Escherichia coli K-12. J Bacteriol, 1970. 101(3): p. 836-43.
40.Neidhardt, F.C., P.L. Bloch, and D.F. Smith, Culture medium for enterobacteria. J Bacteriol, 1974. 119(3): p. 736-47.
41.de Lorenzo, V., et al., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol, 1990. 172(11): p. 6568-72.
42.Konieczna, I., et al., Bacterial Urease and its Role in Long-Lasting Human Diseases. Current Protein and Peptide Science, 2012. 13(8): p. 789-806.
43.Wu, J., et al., Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol, 2014. 80(14): p. 4108-13.
44.Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22.
45.Jiang, S.S., et al., Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrob Agents Chemother, 2010. 54(5): p. 2000-9.
46.Barreto, B., et al., The Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response. J Bacteriol, 2016. 198(24): p. 3296-3308.
47.Zimmer, B., A. Hillmann, and B. Gorke, Requirements for the phosphorylation of the Escherichia coli EIIANtr protein in vivo. FEMS Microbiol Lett, 2008. 286(1): p. 96-102.
48.Schramke, H., et al., Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. Microbiologyopen, 2017. 6(3).
49.Wishart, D.S., et al., HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D608-d617.
50.Aiba, H., Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol, 2007. 10(2): p. 134-9.
51.Castanie-Cornet, M.P. and J.W. Foster, Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology, 2001. 147(Pt 3): p. 709-715.
52.Bak, G., et al., Roles of rpoS-activating small RNAs in pathways leading to acid resistance of Escherichia coli. Microbiologyopen, 2014. 3(1): p. 15-28.
53.Barth, E., et al., Interplay of cellular cAMP levels, {sigma}S activity and oxidative stress resistance in Escherichia coli. Microbiology, 2009. 155(Pt 5): p. 1680-1689.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58272-
dc.description.abstractProteus mirabilis為革蘭氏陰性兼性厭氧菌,為重要的泌尿道病原菌,主要在長期植入尿導管的病人及免疫功能低下的病患中造成伺機性感染。在許多細菌中,具有磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)依賴性碳水化合物磷酸轉移酶系統(碳水化合物PTS),可以催化細菌中許多醣類的攝取並轉化為磷酸化形式。該系統由EI將磷酸烯醇式丙酮酸的磷酸根轉移至HPr,再由HPr將磷酸根轉移到不同醣類的特異性磷酸根攜帶酵素(EII)上,而除了運輸醣類的功能外,碳水化合物PTS還具有多種調節功能。除了醣類PTS外,有些細菌具有另外一種氮PTS (PTSNtr),該系統由EI Ntr (encoded by ptsP)、NPr (encoded by ptsO)及EIIA Ntr (encoded by ptsN)組成,它們分別是醣類PTS的EI、HPr和EIIA之同源物。目前PTSNtr已被發現跟維持細胞完整性、膜壓力或調控K+攝取等功能相關,且其調控作用與EIIA Ntr磷酸化狀態有關。因此,本研究想探討在P. mirabilis中,EIIA Ntr所扮演的角色及其有無磷酸化造成的影響。
首先,我們在LB的環境分析野生株、ptsN突變株、ptsN互補株與ptsN磷酸化位點突變株之表現型,發現ptsN突變株及ptsN磷酸化位點突變株在表面移行能力、尿素酶活性較野生株差,然而,在抗酸能力、抗H2O2、抗高鹽能力及巨噬細胞內存活能力上,都優於野生株。Bacterial-two hybrid assay顯示不管EIIA Ntr磷酸化狀態為何皆可和senor PhoR有交互作用,接著透過reporter assay發現ptsN突變株及ptsN磷酸化位點突變株在低磷酸鹽的環境下會誘發PhoRB的活性,推測磷酸化的EIIA Ntr可能會抑制PhoRB的訊息傳遞。接著,在低磷酸鹽的環境下分析野生株、ptsN突變株、ptsN互補株與ptsN磷酸化位點突變株的表現型,結果顯示ptsN突變株與ptsN磷酸化位點突變株的抗酸、抗鹽及抗氧化壓力的能力較野生株高。接著建構phoB及phoR的突變株,發現兩突變株的抗酸能力都較野生株差,暗示磷酸化的EIIANtr可能透過抑制PhoRB的訊息傳遞來影響抗酸能力。我們進一步發現在高磷酸鹽的環境下ptsN mRNA及 EIIANtr蛋白質量皆較高,故利用IntaRNA預測可能調控ptsN的small RNA,進而找到gcvB,並發現gcvB過度表達時會降低ptsN的表現量,也在低磷環境發現gcvB表現量會升高,並且觀察到在低磷環境下若gcvB突變則抗酸能力下降,表示GcvB在低磷的環境下可能會經由抑制ptsN的表現量而影響抗酸能力。此外,也觀察到ptsN突變株會使crp mRNA下降而rpoS及spf mRNA量上升,透過Crp-dependent GFP螢光試驗也發現ptsN 突變株會顯著減少Crp之活化態。最後,我們也發現ptsN突變株及ptsN磷酸化位點突變株在低鉀環境下會使KdpDE活性增加,且不管EIIA Ntr磷酸化狀態為何皆可和sensor KdpD有交互作用。
總之,磷酸化的EIIANtr會調控P. mirabilis的表面移行能力及尿素酶活性,也會影響抗酸、抗氧化及抗鹽等能力,其可能是受GcvB調控而在低磷環境透過PhoRB 雙組成系統而影響抗酸能力; 或參與在Crp-Spf-RpoS的調控路徑而影響抗酸能力;也可能是在低鉀環境經由KdpDE雙組成系統去影響抗酸、抗氧化及抗鹽等能力。這是首次在P. mirabilis發現EIIANtr及其磷酸化的狀態與致病性具有關聯性。
zh_TW
dc.description.abstractProteus mirabilis with the swarming characteristic often causes urinary tract infections occurring mainly in patients with the long-term implantation of urinary catheters. In many bacteria, it has a phosphoenolpyruvate (PEP)-dependent nitrogen phosphotransferase system (PTSNtr), the system consists of EINtr (encoded by ptsP), NPr (encoded by ptsO) and EIIANtr (encoded by ptsN). At present, PTSNtr has been found to be related to cell integrity, membrane pressure or potassium uptake, and its regulation is related to the phosphorylated status of EIIANtr. Therefore, this study will explore the role of EIIANtr in P. mirabilis and the effects of its phosphorylation.
First, we analyzed the phenotypes of wild type, ptsN mutants, ptsN complementaion and ptsN(H72A) in LB, and found that ptsN mutants and ptsN(H72A) decreased the ability of swarming and urease activity. However, ptsN mutants and ptsN(H72A) are superior to wild type in the tolerance of acid, H2O2, high salt, and macrophage. Bacterial-two hybrid assay showed EIIANtr can interact with senor PhoR regardless of its phosphorylated status. Then, we found that ptsN mutant and ptsN(H72A) induce PhoRB activity in the low-phosphorus environment through the reporter assay. Thus, we speculated that phosphorylated-EIIANtr may inhibit the signal transduction of PhoRB. Next, we analyzed the phenotypes of wild type, ptsN mutants, ptsN complementation and ptsN(H72A) in the low-phosphorus environment and discovered that ptsN mutant and ptsN(H72A) are superior to wild type in the tolerance of acid, H2O2, and high salt. Then, we constructed the phoB and phoR mutant and found that the tolerance of acid of both mutants were worse than wild type, suggesting that phosphorylated-EIIANtr may affect the tolerance of acid by inhibiting PhoRB signaling. We further found that the level of ptsN mRNA and EIIANtr protein are both higher in the high-phosphorus environment. Therefore, we predict small RNA which may regulate ptsN by IntaRNA and found gcvB. Next, we found that gcvB overexpression reduced the expression of ptsN, and the level of gcvB mRNA increased in the low-phosphorus environment. Moreover, gcvB mutant decreased the tolerance of acid in the low-phosphorus environment, indicating that GcvB may affect the tolerance of acid by inhibiting the expression of ptsN in the low-phosphorus environment. In addition, we observed that ptsN mutant reduced the crp mRNA and increased the level of rpoS and spf mRNA. Through the Crp-dependent GFP fluorescence assay, we also found that ptsN mutant significantly reduced the activated state of Crp. In addition, we also found that ptsN mutant and ptsN(H72A) increased KdpDE activity in the low potassium environment, and EIIANtr can interact with sensor KdpD regardless of its phosphorylated status.
In summary, phosphorylated-EIIANtr can regulate the motility and urease activity of P. mirabilis, and also affect the tolerance of acid, H2O2, and high salt. It may be influenced by GcvB in the low-phosphorus environment and through PhoRB TCS or involved in the regulatory pathway of Crp-Spf-RpoS to affect the tolerance of acid; it may also affect the tolerance of acid, H2O2, and high salt through KdpDE two-component system in the low- potassium environment. This is the first time P. mirabilis has discovered that EIIANtr and its phosphorylated state are associated with pathogenicity.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:09:56Z (GMT). No. of bitstreams: 1
U0001-1407202011162900.pdf: 4330637 bytes, checksum: 3964cb78e244550096b7f5b91234ac4e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
目錄 VI
表目錄 VII
圖目錄 VIII
第一章 緒論 1
第一節 奇異變形桿菌 (Proteus mirabilis) 的基本介紹 1
第二節 P.mirabilis的致病因子 1
第三節 P.mirabilis的表面移行能力 (swarming) 4
第四節 ptsN簡介 5
1. ptsN基因位置分布及周邊基因 (附錄五) 5
2. rpoN operon 驗證 (附錄六) (附錄七) 6
3. P. mirabilis N2 EIIANtr磷酸化位點預測 (附錄八) 6
第五節 PhoRB two-component system簡介 7
第六節 KdpDE two-component system簡介 8
第七節 研究動機與目的 9
第二章 實驗材料與方法 10
第一節 實驗設計 10
第二節 實驗材料 11
第三節 構築突變株、互補株、過度表達與定點突變菌株 13
第四節 分析表現型 (phenotype) 及毒力因子 (virulence factors) 29
第五節 基因表達與蛋白質調控 34
第三章 實驗結果 45
第一節 P. mirabilis ptsN突變株之建立與確認 45
第二節 ptsN突變株及ptsN磷酸化位點突變株之表現型分析 48
第三節 EIIANtr與PhoRB two componenet system之交互作用與調控 56
第四節 探討EIIANtr與sRNA之交互作用及調控 70
第五節 EIIANtr與KdpDE two componenet system之交互作用與調控 74
第四章 結論與討論 77
第一節 結論 77
第二節 討論 78
第五章 表 81
參考文獻 89
附錄 93
得獎紀錄 101
表目錄
表一、野生株、ptsN突變株、ptsN complementation及ptsN(H72A)之比較 55
表二、實驗中所使用的菌株及質體 81
表三、實驗中所使用的引子 83
圖目錄
圖一、野生株與ptsN突變株之DNA map對照。 46
圖二、以PCR的方式初步分析ptsN突變株之基因是否被剔除。 46
圖三、以Southern blotting的方式確認突變株之ptsN基因確實有被剔除。 47
圖四、ptsN突變株不影響其下游基因ptsO及rapZ的表現量及其生長。 48
圖五、ptsN突變株及ptsN磷酸化位點突變株會減少P. mirabilis swarming的能力。 49
圖六、ptsN突變株及ptsN磷酸化位點突變株不會影響P. mirabilis swimming的能力。 50
圖七、ptsN突變株及ptsN磷酸化位點突變株比起WT增加了尿素酶活性。 50
圖八、ptsN突變株及ptsN磷酸化位點突變株比起WT增加了對酸性環境 (pH=3) 的抵抗能力。 51
圖九、ptsN突變株及ptsN磷酸化位點突變株比起WT增加了對於氧化壓力 ( H2O2 ) 的抵抗能力。 52
圖十、ptsN突變株及ptsN磷酸化位點突變株比起WT增加了對於高鹽環境 (5 % NaCl) 的抵抗能力。 53
圖十一、ptsN突變株及ptsN磷酸化位點突變株在生物膜形成能力上相較於野生株無顯著差異。 53
圖十二、ptsN突變株及ptsN磷酸化位點突變株會增加P. mirabilis在THP-1的存活率與感染小鼠的能力。54
圖十三、EIIANtr與PhoR有蛋白質間的交互作用。 56
圖十四、野生株、ptsN突變株、ptsN互補株及ptsN磷酸化位點突變株在低磷環境下可以誘發phoBR promoter及 pstSCAB-phoU promoter的活性。 59
圖十五、在低磷環境下,ptsN突變株及ptsN磷酸化位點突變株會增加P. mirabilis抗高鹽、抗H2O2、抗酸能力。 61
圖十六、野生株與phoB突變株之DNA map對照。 62
圖十七、以PCR的方式初步分析phoB突變株之基因是否被剔除。 63
圖十八、以Southern blotting的方式確認突變株之phoB基因確實有被剔除。 64
圖十九、野生株與phoR突變株之DNA map對照。 65
圖二十、以PCR的方式初步分析phoR突變株之基因是否被剔除。 65
圖二十一、以Southern blotting的方式確認突變株之phoR基因確實有被剔除。 66
圖二十二、P. mirabilis N2 之PhoRB TCS 蛋白domain與位置示意圖。 67
圖二十三、在低磷環境下,phoB突變株及phoR突變株會降低P. mirabilis抗酸能力,但不影響其抗氧化及抗高鹽能力。 69
圖二十四、ptsN mRNA及蛋白表現量在高磷酸鹽的環境表現較高。 70
圖二十五、gcvB在低磷環境下可能抑制ptsN表現量 72
圖二十六、在低磷環境下,gcvB 突變株會使抗酸能力顯著下降。 73
圖二十七、非磷酸化的EIIANtr會影響Crp、RpoS、Spf之表現量 74
圖二十八、低鉀環境下,ptsN突變株及ptsN磷酸化位點突變株的kdpF promoter活性較野生株高。 75
圖二十九、非磷酸化的EIIANtr與KdpD有蛋白質間的交互作用。 76
dc.language.isozh-TW
dc.title探討ptsN於尿道致病性奇異變形桿菌中調節毒力因子表達所扮演之角色zh_TW
dc.titleThe role of ptsN in modulation of virulence factor expression in uropathogenic Proteus mirabilisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊翠青(Tsuey-Ching Yang),邱浩傑(Hao-Chieh Chiu)
dc.subject.keywordProteus mirabilis,ptsN,EIIA Ntr,PhoRB,KdpDE,zh_TW
dc.relation.page101
dc.identifier.doi10.6342/NTU202001500
dc.rights.note有償授權
dc.date.accepted2020-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1407202011162900.pdf
  目前未授權公開取用
4.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved