Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58266
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳于高(Yue-Gau Chen)
dc.contributor.authorChase Jhih-Huang Shyuen
dc.contributor.author徐志煌zh_TW
dc.date.accessioned2021-06-16T08:09:47Z-
dc.date.available2014-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-04-21
dc.identifier.citationBeyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.-G., Chan, Y.-C., Goffe, B., 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26, 1-32.
Brandon, M.T., 2007. Programs for Illustrating Closure, Partial Retention, and the Response of Cooling Ages to Erosion: CLOSURE, AGE2EDOT, AND RESPTIME. Yale University.
Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin 110, 985-1009.
Brown, D., Alvarez-Marron, J., Schimmel, M., Wu, Y.M., Camanni, G., 2012. The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics 31.
Brown, R.W., 1991. Backstacking apatite fission-track 'stratigraphy': A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19, 74-77.
Brown, R.W., Summerfield, M.A., 1997. Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surface Processes and Landforms 22, 239-248.
Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids, Oxford : Clarendon Press.
Chen, C.-H., 1977. The stratigraphic problems of the Hsuehshan Range of Taiwan. Proc. Geol. Soc. China 20, 61-70.
Chen, C.-H., 1979. Geology of the East-West Cross Island Highway in Central Taiwan. Memoir of the Geological Society of China 3, 219-236.
Chen, C.-H., Wang, C.-H., 1995. Explanatory notes for the metamorphic facies map of Taiwan. Central Geological Survey, MOEA, Taipei.
Chen, Y., Morgan, W.J., 1990. A nonlinear rheology model for mid-ocean ridge axis topography. Journal of Geophysical Research 95, 17583.
Ching, K.-E., Hsieh, M.-L., Johnson, K.M., Chen, K.-H., Rau, R.-J., Yang, M., 2011. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research 116, 16.
Cundall, P.A., 1989. Numerial experiments on localization in frictional materials. Ingenieur-Archiv 59, 148-159.
Dodson, M.H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contr. Mineral. Petrol. 40, 259-274.
Dodson, M.H., 1979. Theory of Cooling ages, in: Jager, E., Hunziker, J.C. (Eds.), Lecture in Isotope Geology. Springer-Verlag, New York, pp. 194-206.
Fleischer, R.L., Price, P.B., Walker, R.M., 1965. Ion Explosion Spike Mechanism for Formation of Charged Particle Tracks in Solids. Journal of Applied Physics 36, 3645-3652.
Fuller, C.W., Willett, S.D., Fisher, D., Lu, C.Y., 2006. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425, 1-24.
Hayasaka, I., Ichimura, T., Tomita, Y., Tan, K., 1935. 昭和十年臺灣地震震害地域地質調查報告. 昭和十年臺灣震災誌, 1-79.
Howard, A.D., Kerby, G., 1983. Channel changes in badlands. Geological Society of America Bulletin 94, 739- 752.
Hurford, A.J., Green, P.F., 1983. The zeta age calibration of fission-track dating. Chemical Geology 41, 285-317.
Kidder, S., Avouac, J.-P., Chan, Y.-C., 2012. Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology. Journal of Geophysical Research 117, 13.
Lan, C.-H., 2009. Fission track dating of zircon from the middle Hsuehshan Range of Taiwan, Institute of Seismology. National Chung Cheng University, Chia-Yi, p. 72.
Lee, J.-C., Angelier, J., Chu, H.-T., 1997. Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: the Lishan Fault. Tectonophysics 274, 97-115.
Lee, Y.-H., Chen, C.-C., Liu, T.-K., Ho, H.-C., Lu, H.-Y., Lo, W., 2006. Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt — From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters 252, 413-422.
Liang, J.-H., 2011. Zircon and apatite fission track dating along the 'Lishan fault' and its tectonic implication [Master thesis], Institute of Applied Geophysics and Evironmental Sciences. Natinal Chung Cheng University, Chia-Yi, p. 55.
Liu, H.-C., Kao, M.-C., 2011. Lishan [Explanatory Text of The Geological Map of Taiwan]. Central Geological Survey, MOEA, Taipei.
Liu, H.-C., Lin, C.-W., Yang, C.-N., 2009. On the Stratigraphy and Geological Structures in Upper Reachs of the Ta-anchi River, Central Taiwan. Bulletin of the Central Geological Survey 22, 29-61.
Liu, T.-K., Chen, Y.-G., Chen, W.-S., Jiang, S.-H., 2000. Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics 320, 69-82.
Liu, T.-K., Hsieh, S., Chen, Y.-G., Chen, W.-S., 2001. Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters 186, 45-56.
Lock, J., Willett, S., 2008. Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456, 147-162.
Malavieille, J., 2010. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. GSA Today 20, 4-10.
Nissen, S.S., Hayes, D.E., Bochu, Y., Zeng, W., Chen, Y., Nu, X., 1995. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. Journal of Geophysical Research 100, 22447-22483.
Reiners, P.W., Spell, T.L., Nicolescu, S., Zanetti, K.A., 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68, 1857-1887.
Schon, J.H., 1995. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics: Handbook of Geophysical Exploration 18, Section I, Seismic Exploration. Pergamon, Oxford.
Shyu, J., Sieh, K., Chen, Y., 2005. Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters 233, 167-177.
Simoes, M., Avouac, J.P., 2006. Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills. Journal of Geophysical Research 111, 25.
Simoes, M., Avouac, J.P., Beyssac, O., Goffe, B., Farley, K.A., Chen, Y.-G., 2007. Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research 112, 25.
Stuwe, K., White, L., Brown, R., 1994. The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters 124, 63-74.
Tan, E., Lavier, L.L., Van Avendonk, H.J.A., Heuret, A., 2012. The role of frictional strength on plate coupling at the subduction interface. Geochemistry, Geophysics, Geosystems 13, 19.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57-76.
Teng, L.S., 1992. Geotectonic Evolusion of Tertiary Continental Margin Basins of Taiwan. Petroleum Geology of Taiwan 27, 1-19.
Teng, L.S., 2007. Quaternary Tectonics Of Taiwan. Special Publication of the Central Geological Survey 18, 1-24.
Torii, K., 1934. Tosei [Explanatory Text of The Geological Map of Taiwan]. The Forestry Experimental Station of Taiwan Government-General, Taipei.
Tsao, S., 1996. The geological significances of illite crystallinity, zircon fission-track ages, and K-Ar ages of metasedimentary rocks of the Central Range of Taiwan, Institute of Geosciences. National Taiwan University, Taipei, p. 272.
Willett, S.D., Fisher, D., Fuller, C., Yeh, E.-C., Lu, C.-Y., 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31, 945-948.
Yamato, P., Mouthereau, F., Burov, E., 2009. Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. Geophysical Journal International 176, 307-326.
Yu, S.-B., Chen, H.-Y., Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58266-
dc.description.abstract雪山山脈是台灣的第二大山脈,其位於台灣島北部。除了岩性上與構造上具有其獨特的特徵之外,在熱定年學上其與中央山脈一樣地反映出具有著高掘升速率。然而在大多前人探討台灣造山演化的正演模型研究當中,雪山山脈的存在在模型設置上被忽略了,因此雪山山脈的造山熱力演化過程仍然是有待探討的,其熱力演化過程應有別於整體台灣造山。此外,在探討熱定年學的研究中,也鮮少考慮降溫速率對於封存溫度所造成的效應對於熱定年年代-高度關係的影響。因此在此研究中,我們考慮此效應並將一維熱傳導模型應用雪山山脈中部,將模型結果與熱定年年代互相比較來探討該區域的抬升與剝蝕歷史。其後為了將模型推展到二維以及探討雪山山脈的形成,我們引入熱力學模型,並將其模型結果與實際雪山山脈的地球化學數據進行對比。在一維模型部分,本研究發現了一個特殊的熱定年學現象,我們稱之為「寬帶癒合」。在造山初期地層開始剝蝕冷卻時,在地底深處會形成一個因封存邊界垂直快速加深,而形成擁有相近熱定年年代的區域。將此一維模型與雪山山脈中部的熱定年資料做對比,在假設剝蝕速率不變的前提之下,模型結果得出雪山山脈是從三百一十萬年前開始以每百萬年五公里的速率剝蝕至今。在另一分面,二維模型的結果顯示最初的岩性分布設置會影響到造山帶的變形行為,進而產生不同的熱年代分布結果。模型的結果說明了雪山槽的存在影響了雪山山脈的形成,且雪山山脈東側邊界在造山初期曾經是一個活躍的構造變形帶。zh_TW
dc.description.abstractLocated in northern Taiwan, the Hsuehshan Range is the second largest range and has its own special lithology, structural and thermochronological features with high exhumation rate. In most previous studies of forward modeling of Taiwan mountain building, however, the existence of the Hsuehshan Range was ignored. Its thermal-mechanical evolution should be investigated in addition to the evolution of Taiwan mountain range. Moreover, in the aspect of thermochronology, most of the previous studies that discussed the age-elevation relationship do not consider the effect of cooling rate on closure temperature. In this study, we simulate this effect numerically and discuss local exhumation rate in middle Hsuehshan Range using six new zircon fission track ages together with previously published data via the 1-D thermal advection-diffusion model. Furthermore, for the purpose of applying the cooling-rate-closure-temperature relationship to 2-D model and testing the assumption of the initial tectonic framework of the Hsuehshan Range, we simulate the formation of the Hsuehshan Range by introducing the 2-D thermal-mechanical model and compared the modeling predictions with real geochemical data. In the 1-D model, we found a unique phenomenon that we call 'Wide-zoned Closure' in the initial stage of orogen. The Wide-zoned Closure signature will induce a spatially vertical zone with similar thermochronological ages. As a result, a vertical profile of thermal age would show a slowly decreasing age trend. By regulating parameters reasonably, the best-fitting 1-D model to the thermochronological data in middle Hsuehshan Range suggests that this area started to exhume with a rate of 5.0 km/Myr around 3.1 Ma. On the other hand, the 2-D modeling results imply that the initial lithology setting would influence the deformation behavior of orogen and result in different distribution of thermo-chronological ages. Additionally, the results suggest that the Hsuehshan Range has inherited influence from the Hsuehshan Basin and that the eastern part of the Hsuehshan Range was an active deformation zone in initial stage of orogen.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:09:47Z (GMT). No. of bitstreams: 1
ntu-103-R00224113-1.pdf: 6214681 bytes, checksum: 0c3f4031b54be90ae09b41adef79e2eb (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 ....................................... I
Acknowledgements .................................. III
Abstract ............................................ V
摘要 ............................................... VII
Table of Contents .................................. IX
List of Figures .................................... XI
List of Tables .................................... XII
List of Equations ................................ XIII
Chapter 1 Introduction .............................. 1
Chapter 2 Geological Setting and Overview of Existing
Data ........................................... 7
2.1 Stratigraphy & Structures ....................... 7
2.2 Existing Thermal, Chronological Data, & Tectonic
Framework ...................................... 9
Chapter 3 Thermochronology & 1-D Numerical Model ... 13
3.1 Zircon Fission Track ........................... 13
3.1.1 Mechanism & Geological Meaning ............... 13
3.1.2 Samples, Experiments, & Parameters ........... 14
3.2 One-Dimensional Thermal Advection-Diffusion
Model ......................................... 15
3.2.1 Modeling Approach ............................ 15
3.2.2 Limitation & Justification ................... 17
3.2.3 Model Geometry, Parameters, & Variables ...... 19
3.3 Results of Thermochronology .................... 20
3.4 Results of 1-D Numerical Model ................. 24
3.4.1 Cooling & Closure History .................... 24
3.4.2 Sensitivity Test.............................. 26
Chapter 4 Two-Dimensional Thermal-Mechanical Model . 31
4.1 Modeling Approach .............................. 31
4.1.1 Subroutine for Thermochronology .............. 33
4.1.2 Subroutine for Surface Processes ............. 35
4.2 Model Geometries & Parameters .................. 36
4.3 Data Analysis .................................. 39
4.4 Results of 2-D Thermal-Mechanical Model ........ 39
4.4.1 Model with horizontally uniform initial
setting ....................................... 39
4.4.2 Model with the Hsuehshan Basin ............... 41
4.4.3 Model without the Hsuehshan Basin ............ 41
Chapter 5 Discussion ............................... 49
5.1 Estimation of Exhumation Rate Only by Experimental
Data .......................................... 49
5.2 Characteristic of Closure History in 1-D Numerical
Model.......................................... 51
5.3 Apparent Unreasonable Setting of Exhumation Rate 52
5.4 Wide-zoned Closure, A Thermochronological
Phenomenon .................................... 53
5.5 Parameter Sensitivities of 1-D model ........... 54
5.6 Local Exhumation Rate in Mid-HR ................ 55
5.7 Comparison between 2-D Models and Geological
Data .......................................... 58
5.7.1 Most Likely Initial Tectonic Setting of 2-D
Model ......................................... 58
5.7.2 Thermal-Mechanical Evolution of Mid-HR ....... 59
Chapter 6 Conclusions .............................. 61
6.1 1-D Model and Local Exhumation Rate in Mid-HR .. 61
6.2 2-D Model and Thermal-Mechanical Evolution of
Mid-HR ........................................ 61
6.3 Introspection .................................. 62
References ......................................... 63
Appendix ........................................... 67
A. Analysis Data of Zeta Method .................... 67
B. Analysis Data of Zircon Fission Track ........... 69
Biography .......................................... 77
dc.language.isoen
dc.title利用鋯石核飛跡年代與數值模擬來探討雪山山脈中部熱力演化過程zh_TW
dc.titleThe Thermal-Mechanical Evolution of Middle Hsuehshan Range, Taiwan: Using Numerical Modeling and Zircon Fission Track Agesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor譚諤(Eh Tan)
dc.contributor.oralexamcommittee葉恩肇(En-Chao Yeh),喬凌雲(Ling-Yun Chiao),李元希(Yuan-Hsi Lee)
dc.subject.keyword台灣,雪山山脈,熱年代-高度關係,鋯石核飛跡,寬帶癒合,數值模型,zh_TW
dc.subject.keywordTaiwan,Hsuehshan Range,age-elevation relationship,zircon fission track,Wide-zoned Closure,numerical model,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2014-04-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved