請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國(Jenn-Gwo Hwu) | |
| dc.contributor.author | Chien-Chih Lin | en |
| dc.contributor.author | 林建智 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:09:27Z | - |
| dc.date.available | 2019-07-22 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-02 | |
| dc.identifier.citation | References
[1] D. Kahng and M. Atalla, 'Silicon-silicon dioxide field induced surface devices,' presented at the IRE-AIEE Solid-State Device Research Conference, 1960. [2] G. E. Moore, 'Cramming more components onto integrated circuits,' Electronics, vol. 38, pp. 114-117, 1965. [3] G. E. Moore, 'Cramming more components onto integrated circuits,' Proceedings of the IEEE, vol. 86, pp. 82-85, Jan 1998. [4] S. Borkar, 'Design challenges of technology scaling,' Micro, IEEE, vol. 19, pp. 23-29, 1999. [5] S. G. Chamberlain and S. Ramanan, 'Drain-induced barrier-lowering analysis in VLSI MOSFET devices using two-dimensional numerical simulations,' IEEE Transactions on Electron Devices, vol. 33, pp. 1745-1753, Nov 1986. [6] T. A. Fjeldly and M. Shur, 'Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFETs,' IEEE Transactions on Electron Devices, vol. 40, pp. 137-145, Jan 1993. [7] Z. H. Liu, C. M. Hu, J. H. Huang, T. Y. Chan, M. C. Jeng, P. K. Ko, and Y. C. Cheng, 'Threshold voltage model for deep-submicrometer MOSFETs,' IEEE Transactions on Electron Devices, vol. 40, pp. 86-95, Jan 1993. [8] W. Fikry, G. Ghibaudo, and M. Dutoit, 'Temperature dependence of drain-induced barrier lowering in deep submicrometre MOSFETs,' Electronics Letters, vol. 30, pp. 911-912, May 1994. [9] D. J. Frank, Y. Taur, and H. S. P. Wong, 'Generalized scale length for two-dimensional effects in MOSFET's,' IEEE Electron Device Letters, vol. 19, pp. 385-387, Oct 1998. [10] C. H. Shih, Y. M. Chen, and C. Lien, 'An analytical threshold voltage roll-off equation for MOSFET by using effective-doping model,' Solid-State Electronics, vol. 49, pp. 808-812, 2005. [11] W. H. Lo, T. C. Chang, J. Y. Tsai, C. H. Dai, C. E. Chen, S. H. Ho, H. M. Chen, O. Cheng, and C. T. Huang, 'Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress,' Applied Physics Letters, vol. 100, Apr 2012. [12] W. C. Luo, H. Yang, W. W. Wang, L. C. Zhao, H. Xu, S. Q. Ren, B. Tang, Z. Y. Tang, Y. F. Xu, J. Xu, J. Yan, C. Zhao, D. P. Chen, and T. C. Ye, 'Physical understanding of different drain-induced-barrier-lowering variations in high-k/metal gate n-channel metal-oxide-semiconductor-fieldeffect-transistors induced by charge trapping under normal and reverse channel hot carrier stresses,' Applied Physics Letters, vol. 103, Oct 2013. [13] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, 'Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's,' IEEE Electron Device Letters, vol. 18, pp. 209-211, May 1997. [14] Y. Shi, X. W. Wang, and T. P. Ma, 'Tunneling leakage current in ultrathin (< 4 nm) nitride/oxide stack dielectrics,' IEEE Electron Device Letters, vol. 19, pp. 388-390, Oct 1998. [15] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, 'Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,' IEEE Transactions on Electron Devices, vol. 46, pp. 1464-1471, Jul 1999. [16] S. Mudanai, Y. Y. Fan, Q. Ouyang, A. F. Tasch, and S. K. Banerjee, 'Modeling of direct tunneling current through gate dielectric stacks,' IEEE Transactions on Electron Devices, vol. 47, pp. 1851-1857, Oct 2000. [17] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. M. Hu, X. W. Wang, X. Guo, and T. P. Ma, 'Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,' IEEE Electron Device Letters, vol. 21, pp. 540-542, Nov 2000. [18] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, 'Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,' Proceedings of the IEEE, vol. 91, pp. 305-327, Feb 2003. [19] E. P. Nakhmedov, K. Wieczorek, H. Burghardt, and C. Radehaus, 'Quantum-mechanical study of the direct tunneling current in metal-oxide-semiconductor structures,' Journal of Applied Physics, vol. 98, Jul 2005. [20] C. H. Chen, K. C. Chuang, and J. G. Hwu, 'Characterization of inversion tunneling current saturation behavior for MOS(p) capacitors with ultrathin oxides and high-k dielectrics,' IEEE Transactions on Electron Devices, vol. 56, pp. 1262-1268, Jun 2009. [21] E. Ko, K. R. Lee, and H. J. Choi, 'Effects of interfacial suboxides and dangling bonds on tunneling current through nanometer-thick SiO2 layers,' Physical Review B, vol. 84, Jul 2011. [22] J. C. Ranuarez, M. J. Deen, and C. H. Chen, 'A review of gate tunneling current in MOS devices,' Microelectronics Reliability, vol. 46, pp. 1939-1956, Dec 2006. [23] H. Iwai, 'Roadmap for 22 nm and beyond,' Microelectronic Engineering, vol. 86, pp. 1520-1528, Jul-Sep 2009. [24] Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, 'Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,' in IEEE International Electron Devices Meeting (IEDM), 1999, pp. 919-921. [25] Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, 'Ultrathin-body SOI MOSFET for deep-sub-tenth micron era,' IEEE Electron Device Letters, vol. 21, pp. 254-255, May 2000. [26] L. Chang, K. J. Yang, Y. C. Yeo, I. Polishchuk, T. J. King, and C. M. Hu, 'Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs,' IEEE Transactions on Electron Devices, vol. 49, pp. 2288-2295, Dec 2002. [27] J. Koga, S. Takagi, and A. Toriumi, 'Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs,' IEEE Transactions on Electron Devices, vol. 49, pp. 1042-1048, Jun 2002. [28] T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, 'Ultimately thin double-gate SOI MOSFETs,' IEEE Transactions on Electron Devices, vol. 50, pp. 830-838, Mar 2003. [29] V. P. Trivedi and J. G. Fossum, 'Scaling fully depleted SOI CMOS,' IEEE Transactions on Electron Devices, vol. 50, pp. 2095-2103, Oct 2003. [30] A. Chaudhry and M. J. Kumar, 'Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review,' IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 99-109, Mar 2004. [31] V. P. Trivedi and J. G. Fossum, 'Nanoscale FD/SOI CMOS: Thick or thin BOX?,' IEEE Electron Device Letters, vol. 26, pp. 26-28, Jan 2005. [32] G. Tsutsui, M. Saitoh, T. Nagumo, and T. Hiramoto, 'Impact of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI MOSFETs,' IEEE Transactions on Nanotechnology, vol. 4, pp. 369-373, May 2005. [33] G. Tsutsui and T. Hiramoto, 'Mobility and threshold-voltage comparison between (110)- and (100)-oriented ultrathin-body silicon MOSFETs,' IEEE Transactions on Electron Devices, vol. 53, pp. 2582-2588, Oct 2006. [34] S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaudo, 'Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects,' Solid-State Electronics, vol. 51, pp. 239-244, Feb 2007. [35] S. H. Jin, M. V. Fischetti, and T. W. Tang, 'Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs,' IEEE Transactions on Electron Devices, vol. 54, pp. 2191-2203, Sep 2007. [36] A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, 'Undoped-body extremely thin SOI MOSFETs with back gates,' IEEE Transactions on Electron Devices, vol. 56, pp. 2270-2276, Oct 2009. [37] G. Darbandy, F. Lime, A. Cerdeira, M. Estrada, I. Garduno, and B. Iniguez, 'Study of potential high-k dielectric for UTB SOI MOSFETs using analytical modeling of the gate tunneling leakage,' Semiconductor Science and Technology, vol. 26, Nov 2011. [38] N. Agrawal, Y. Kimura, R. Arghavani, and S. Datta, 'Impact of transistor architecture (bulk planar, trigate on bulk,ultrathin-body planar SOI) and material (silicon or III-V semiconductor) on variation for logic and SRAM applications,' IEEE Transactions on Electron Devices, vol. 60, pp. 3298-3304, Oct 2013. [39] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. M. Hu, 'FinFET - A self-aligned double-gate MOSFET scalable to 20 nm,' IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, Dec 2000. [40] X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, 'Sub-50 nm p-channel FinFET,' IEEE Transactions on Electron Devices, vol. 48, pp. 880-886, May 2001. [41] Y. K. Choi, T. J. King, and C. M. Hu, 'Nanoscale CMOS spacer FinFET for the terabit era,' IEEE Electron Device Letters, vol. 23, pp. 25-27, Jan 2002. [42] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. J. King, J. Bokor, C. Hu, M. R. Lin, and D. Kyser, 'FinFET scaling to 10 nm gate length,' in IEEE International Electron Devices Meeting (IEDM), 2002, pp. 251-254. [43] L. L. Chang, Y. K. Choi, J. Kedzierski, N. Lindert, P. Q. Xuan, J. Bokor, C. M. Hu, and T. J. King, 'Moore's law lives on - Ultra-thin body SOI and FinFET CMOS transistors look to continue Moore's law for many years to come,' IEEE Circuits & Devices, vol. 19, pp. 35-42, Jan 2003. [44] D. M. Fried, J. S. Duster, and K. T. Kornegay, 'Improved independent gate N-type FinFET fabrication and characterization,' IEEE Electron Device Letters, vol. 24, pp. 592-594, Sep 2003. [45] J. Kedzierski, M. Ieong, E. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and H. S. P. Wong, 'Extension and source/drain design for high-performance FinFET devices,' IEEE Transactions on Electron Devices, vol. 50, pp. 952-958, Apr 2003. [46] D. M. Fried, J. S. Duster, and K. T. Kornegay, 'High-performance p-type independent-gate FinFETs,' IEEE Electron Device Letters, vol. 25, pp. 199-201, Apr 2004. [47] W. Z. Xiong, G. Gebara, J. Zaman, M. Gostkowski, B. Nguyen, G. Smith, D. Lewis, C. R. Cleavelin, R. Wise, S. F. Yu, M. Pas, T. J. King, and J. P. Colinge, 'Improvement of FinFET electrical characteristics by hydrogen annealing,' IEEE Electron Device Letters, vol. 25, pp. 541-543, Aug 2004. [48] T. Rudenko, N. Collaert, S. De Gendt, V. Kilchytska, M. Jurczak, and D. Flandre, 'Effective mobility in FinFET structures with HfO2 and SiON gate dielectrics and TaN gate electrode,' Microelectronic Engineering, vol. 80, pp. 386-389, Jun 2005. [49] Y. Liu, S. Kijima, E. Sugimata, M. Masahara, K. Endo, T. Matsukawa, K. Ishii, K. Sakamoto, T. Sekigawa, H. Yamauchi, Y. Takanashi, and E. Suzuki, 'Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication,' IEEE Transactions on Nanotechnology, vol. 5, pp. 723-730, Nov 2006. [50] M. H. Chiang, J. N. Lin, K. Kim, and C. T. Chuang, 'Random dopant fluctuation in limited-width FinFET technologies,' IEEE Transactions on Electron Devices, vol. 54, pp. 2055-2060, Aug 2007. [51] K. Akarvardar, C. D. Young, M. O. Baykan, I. Ok, T. Ngai, K. W. Ang, M. P. Rodgers, S. Gausepohl, P. Majhi, C. Hobbs, P. D. Kirsch, and R. Jammy, 'Impact of fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities,' IEEE Electron Device Letters, vol. 33, pp. 351-353, Mar 2012. [52] E. E. Aktakka, N. Ghafouri, C. E. Smith, R. L. Peterson, M. M. Hussain, and K. Najafi, 'Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SOI substrate,' IEEE Electron Device Letters, vol. 34, pp. 1334-1336, Oct 2013. [53] K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, A. Tolksdorf, J. Schulze, and I. Eisele, 'Vertical tunnel field-effect transistor,' IEEE Transactions on Electron Devices, vol. 51, pp. 279-282, Feb 2004. [54] W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, 'Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,' IEEE Electron Device Letters, vol. 28, pp. 743-745, Aug 2007. [55] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, 'Tunnel field-effect transistor without gate-drain overlap,' Applied Physics Letters, vol. 91, Jul 2007. [56] P. F. Guo, L. T. Yang, Y. Yang, L. Fan, G. Q. Han, G. S. Samudra, and Y. C. Yeo, 'Tunneling field-effect transistor: effect of strain and temperature on tunneling current,' IEEE Electron Device Letters, vol. 30, pp. 981-983, Sep 2009. [57] M. Schlosser, K. K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, and I. Eisele, 'Fringing-induced drain current improvement in the tunnel field-effect transistor with high-k gate dielectrics,' IEEE Transactions on Electron Devices, vol. 56, pp. 100-108, Jan 2009. [58] C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, 'Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric,' Applied Physics Letters, vol. 96, Mar 2010. [59] W. Y. Choi and W. Lee, 'Hetero-gate-dielectric tunneling field-effect transistors,' IEEE Transactions on Electron Devices, vol. 57, pp. 2317-2319, Sep 2010. [60] A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, 'Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,' Journal of Applied Physics, vol. 107, Jan 2010. [61] A. M. Ionescu and H. Riel, 'Tunnel field-effect transistors as energy-efficient electronic switches,' Nature, vol. 479, pp. 329-337, Nov 2011. [62] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, 'GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition,' IEEE Electron Device Letters, vol. 24, pp. 209-211, Apr 2003. [63] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, 'Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,' Applied Physics Letters, vol. 87, Dec 2005. [64] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, 'Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer,' Applied Physics Letters, vol. 88, Jan 2006. [65] R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and L. G. Thayne, 'Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm(2)/V center dot s, and transconductance of over 475 mu S/mu m,' IEEE Electron Device Letters, vol. 28, pp. 1080-1082, Dec 2007. [66] Y. Xuan, P. D. Ye, and T. Shen, 'Substrate engineering for high-performance surface-channel III-V metal-oxide-semiconductor field-effect transistors,' Applied Physics Letters, vol. 91, Dec 2007. [67] P. D. Ye, 'Main determinants for III-V metal-oxide-semiconductor field-effect transistors (invited),' Journal of Vacuum Science & Technology A, vol. 26, pp. 697-704, Jul-Aug 2008. [68] M. Luisier and G. Klimeck, 'Atomistic full-band design study of InAs band-to-band tunneling field-effect transistors,' IEEE Electron Device Letters, vol. 30, pp. 602-604, Jun 2009. [69] J. A. del Alamo, 'Nanometre-scale electronics with III-V compound semiconductors,' Nature, vol. 479, pp. 317-323, Nov 2011. [70] A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. M. Hu, and A. Javey, 'Ultrathin body InAs tunneling field-effect transistors on Si substrates,' Applied Physics Letters, vol. 98, Mar 2011. [71] F. Chen, J. L. Xia, D. K. Ferry, and N. J. Tao, 'Dielectric screening enhanced performance in graphene FET,' Nano Letters, vol. 9, pp. 2571-2574, Jul 2009. [72] G. Fiori and G. Iannaccone, 'On the possibility of tunable-gap bilayer graphene FET,' IEEE Electron Device Letters, vol. 30, pp. 261-264, Mar 2009. [73] L. Liao, J. W. Bai, Y. Q. Qu, Y. Huang, and X. F. Duan, 'Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors,' Nanotechnology, vol. 21, Jan 2010. [74] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, '100-GHz transistors from wafer-scale epitaxial graphene,' Science, vol. 327, pp. 662-662, Feb 2010. [75] F. Schwierz, 'Graphene transistors,' Nature Nanotechnology, vol. 5, pp. 487-496, Jul 2010. [76] F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, 'Graphene field-effect transistors with high on/off current ratio and large transport and gap at room temperature,' Nano Letters, vol. 10, pp. 715-718, Feb 2010. [77] D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, 'Graphene field-effect transistors ' Journal of Physics D-Applied Physics, vol. 45, Jan 2012. [78] G. Eda, A. Nathan, P. Wobkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, and M. Chhowalla, 'Graphene oxide gate dielectric for graphene-based monolithic field effect transistors,' Applied Physics Letters, vol. 102, Apr 2013. [79] S. Ghatak, A. N. Pal, and A. Ghosh, 'Nature of electronic states in atomically thin MoS2 field-effect transistors,' Acs Nano, vol. 5, pp. 7707-7712, Oct 2011. [80] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, 'Single-layer MoS2 transistors,' Nature Nanotechnology, vol. 6, pp. 147-150, Mar 2011. [81] B. Radisavljevic, M. B. Whitwick, and A. Kis, 'Integrated circuits and logic operations based on single-layer MoS2,' Acs Nano, vol. 5, pp. 9934-9938, Dec 2011. [82] H. Liu, A. T. Neal, and P. D. D. Ye, 'Channel length scaling of MoS2 MOSFETs,' Acs Nano, vol. 6, pp. 8563-8569, Oct 2012. [83] H. Liu and P. D. D. Ye, 'MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric,' IEEE Electron Device Letters, vol. 33, pp. 546-548, Apr 2012. [84] H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, 'Integrated circuits based on bilayer MoS2 transistors,' Nano Letters, vol. 12, pp. 4674-4680, Sep 2012. [85] Z. Y. Yin, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, 'Single-layer MoS2 phototransistors,' Acs Nano, vol. 6, pp. 74-80, Jan 2012. [86] W. Z. Bao, X. H. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, 'High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,' Applied Physics Letters, vol. 102, Jan 2013. [87] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, 'Logic circuits with carbon nanotube transistors,' Science, vol. 294, pp. 1317-1320, Nov 2001. [88] L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, 'Epitaxial core-shell and core-multishell nanowire heterostructures,' Nature, vol. 420, pp. 57-61, Nov 2002. [89] Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, 'High performance silicon nanowire field effect transistors,' Nano Letters, vol. 3, pp. 149-152, Feb 2003. [90] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, 'High-performance fully depleted silicon-nanowire (diameter <= 5 nm) gate-all-around CMOS devices,' IEEE Electron Device Letters, vol. 27, pp. 383-386, May 2006. [91] G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, J. A. Ott, R. J. Miller, and W. Haensch, 'Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain,' Applied Physics Letters, vol. 90, Jun 2007. [92] H. M. Fahad, C. E. Smith, J. P. Rojas, and M. M. Hussain, 'Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits,' Nano Letters, vol. 11, pp. 4393-4399, Oct 2011. [93] S. K. Sinha and S. Chaudhury, 'Impact of oxide thickness on gate capacitance- A comprehensive analysis on MOSFET, Nanowire FET, and CNTFET devices,' IEEE Transactions on Nanotechnology, vol. 12, pp. 958-964, Nov 2013. [94] T. Wang, L. Lou, and C. Lee, 'A junctionless gate-all-around silicon nanowire FET of high linearity and Its potential applications,' IEEE Electron Device Letters, vol. 34, pp. 478-480, Apr 2013. [95] M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, 'Ultrathin (< 4 nm) SiO(2) and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,' Journal of Applied Physics, vol. 90, pp. 2057-2121, Sep 2001. [96] G. D. Wilk, R. M. Wallace, and J. M. Anthony, 'High-kappa gate dielectrics: Current status and materials properties considerations,' Journal of Applied Physics, vol. 89, pp. 5243-5275, May 2001. [97] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, 'Review on high-k dielectrics reliability issues,' IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 5-19, Mar 2005. [98] J. Robertson, 'High dielectric constant gate oxides for metal oxide Si transistors,' Reports on Progress in Physics, vol. 69, pp. 327-396, Feb 2006. [99] W. Arden, M. Brillouet, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, '“More-than-Moore” White Paper,' Available: http://www.itrs.net, 2010. [100] C. H. Diaz, K. Goto, H. T. Huang, Y. Yasuda, C. P. Tsao, T. T. Chu, W. T. Lu, V. Chang, Y. T. Hou, Y. S. Chao, P. F. Hsu, C. L. Chen, K. C. Lin, J. A. Ng, W. C. Yang, C. H. Chen, Y. H. Peng, C. J. Chen, C. C. Chen, M. H. Yu, L. Y. Yeh, K. S. You, K. S. Chen, K. B. Thei, C. H. Lee, S. H. Yang, J. Y. Cheng, K. T. Huang, J. J. Liaw, Y. Ku, S. M. Jang, H. Chuang, and M. S. Liang, '32nm gate-first high-k/metal-gate technology for high performance low power applications,' in IEEE International Electron Devices Meeting (IEDM), 2008, pp. 1-4. [101] X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H. S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y. W. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J. H. Ku, M. Khare, and A. Steegen, 'A cost effective 32nm high-K/ metal gate CMOS technology for low power applications with single-metal/gate-first process,' in Symposium on VLSI Technology 2008, pp. 88-89. [102] 'International Technology Roadmap for Semiconductors,' Available: http://www.itrs.net. [103] C. D. Dimitrakopoulos and P. R. L. Malenfant, 'Organic thin film transistors for large area electronics,' Advanced Materials, vol. 14, pp. 99-+, Jan 2002. [104] S. Uchikoga, 'Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays,' Mrs Bulletin, vol. 27, pp. 881-886, Nov 2002. [105] S. J. Lee, S. W. Lee, K. M. Oh, S. J. Park, K. E. Lee, Y. S. Yoo, K. M. Lim, M. S. Yang, Y. S. Yang, and Y. K. Hwang, 'A novel five-photomask low-temperature polycrystalline silicon CMOS structure for AMLCD application,' IEEE Transactions on Electron Devices, vol. 57, pp. 2324-2329, Sep 2010. [106] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, 'Field effect transistors with SrTiO(3) gate dielectric on Si,' Applied Physics Letters, vol. 76, pp. 1324-1326, Mar 2000. [107] J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. H. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle, and Y. Chen, 'Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon,' IEEE Transactions on Electron Devices, vol. 47, pp. 121-128, Jan 2000. [108] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, 'Properties of high kappa gate dielectrics Gd2O3 and Y2O3 for Si,' Journal of Applied Physics, vol. 89, pp. 3920-3927, Apr 2001. [109] S. Miyazaki, 'Photoemission study of energy-band alignments and gap-state density distributions for high-k dielectrics,' Journal of Vacuum Science & Technology B, vol. 19, pp. 2212-2216, Nov-Dec 2001. [110] T. Kauerauf, R. Degraeve, E. Cartier, C. Soens, and G. Groeseneken, 'Low Weibull slope of breakdown distributions in high-k layers,' IEEE Electron Device Letters, vol. 23, pp. 215-217, Apr 2002. [111] J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, 'Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique,' Journal of Applied Physics, vol. 92, pp. 6739-6742, Dec 2002. [112] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, 'Current transport in metal/hafnium oxide/silicon structure,' IEEE Electron Device Letters, vol. 23, pp. 97-99, Feb 2002. [113] S. W. Huang and J. G. Hwu, 'Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing,' IEEE Transactions on Electron Devices, vol. 50, pp. 1658-1664, Jul 2003. [114] A. Kerber, E. Cartier, P. J. Roussel, L. Pantisano, T. Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, 'Charge trapping and dielectric reliability of SiO2-Al2O3 gate stacks with TiN electrodes,' IEEE Transactions on Electron Devices, vol. 50, pp. 1261-1269, May 2003. [115] C. S. Kuo, J. F. Hsu, S. W. Huang, L. S. Lee, M. J. Tsai, and J. G. Hwu, 'High-k Al2O3 gate dielectrics prepared by oxidation of aluminum film in nitric acid followed by high-temperature annealing,' IEEE Transactions on Electron Devices, vol. 51, pp. 854-858, Jun 2004. [116] T. P. Ma, H. M. Bu, X. W. Wang, L. Y. Song, W. He, M. Wang, H. H. Tseng, and P. J. Tobin, 'Special reliability features for Hf-based high-k gate dielectrics,' IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 36-44, Mar 2005. [117] M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rosner, M. Grieb, and L. Risch, 'Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications,' Solid-State Electronics, vol. 49, pp. 716-720, May 2005. [118] C. H. Hsu, M. T. Wang, and J. Y. M. Lee, 'Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric,' Journal of Applied Physics, vol. 100, Oct 2006. [119] P. D. Kirsch, M. A. Quevedo-Lopez, H. J. Li, Y. Senzaki, J. J. Peterson, S. C. Song, S. A. Krishnan, N. Moumen, J. Barnett, G. Bersuker, P. Y. Hung, B. H. Lee, T. Lafford, Q. Wang, D. Gay, and J. G. Ekerdt, 'Nucleation and growth study of atomic layer deposited HfO2 gate dielectrics resulting in improved scaling and electron mobility,' Journal of Applied Physics, vol. 99, Jan 2006. [120] C. D. Young, D. Heh, S. V. Nadkarni, R. Choi, J. J. Peterson, J. Barnett, B. H. Lee, and G. Bersuker, 'Electron trap generation in high-k gate stacks by constant voltage stress,' IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 123-131, Jun 2006. [121] C. H. Chang and J. G. Hwu, 'Reliability of low-temperature-processing hafnium oxide gate dielectrics prepared by cost-effective nitric acid oxidation technique,' IEEE Transactions on Device and Materials Reliability, vol. 7, pp. 611-616, Dec 2007. [122] C. H. Chen, I. Y. K. Chang, J. Y. M. Lee, F. C. Chiu, Y. K. Chiouand, and T. B. Wu, 'Reliability properties of metal-oxide-semiconductor capacitors using HfO2 high-kappa dielectric,' Applied Physics Letters, vol. 91, Sep 2007. [123] D. C. Hsu, M. T. Wang, J. Y. M. Lee, and P. C. Juan, 'Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric,' Journal of Applied Physics, vol. 101, May 2007. [124] C. C. Yeh, T. P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger, and K. Min, 'Frenkel-Poole trap energy extraction of atomic layer deposited Al2O3 and HfxAlyO thin films,' Applied Physics Letters, vol. 91, Sep 2007. [125] C. H. Chang and J. G. Hwu, 'Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,' IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 215-221, Jun 2009. [126] C. H. Chang and J. G. Hwu, 'Trapping characteristics of Al2O3/HfO2/SiO2 stack structure prepared by low temperature in situ oxidation in dc sputtering,' Journal of Applied Physics, vol. 105, May 2009. [127] M. A. Negara, K. Cherkaoui, P. K. Hurley, C. D. Young, P. Majhi, W. Tsai, D. Bauza, and G. Ghibaudo, 'Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge,' Journal of Applied Physics, vol. 105, Jan 2009. [128] Y. N. Novikov, V. A. Gritsenko, and K. A. Nasyrov, 'Charge transport mechanism in amorphous alumina,' Applied Physics Letters, vol. 94, Jun 2009. [129] S. Y. Cha, H. J. Kim, and D. J. Choi, 'Memory characteristics of Al2O3/LaAlO3/SiO2 multilayer structures with tunnel oxide thickness variation,' Journal of Materials Science, vol. 45, pp. 5223-5227, Oct 2010. [130] J. Kwon and Y. J. Chabal, 'Thermal stability comparison of TaN on HfO2 and Al2O3,' Applied Physics Letters, vol. 96, Apr 2010. [131] B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, and J. Kim, 'Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices,' Applied Physics Letters, vol. 97, Jul 2010. [132] D. Liu, S. J. Clark, and J. Robertson, 'Oxygen vacancy levels and electron transport in Al2O3,' Applied Physics Letters, vol. 96, Jan 2010. [133] D. J. Park, J. W. Lim, and B. O. Park, 'Stabilization of Al2O3 gate oxide on plastic substrate for low temperature poly-silicon by in situ plasma treatment,' Solid-State Electronics, vol. 54, pp. 323-326, Mar 2010. [134] J. K. Park, Y. Park, S. K. Lim, J. S. Oh, M. S. Joo, K. Hong, and B. J. Cho, 'Improvement of memory performance by high temperature annealing of the Al2O3 blocking layer in a charge-trap type flash memory device,' Applied Physics Letters, vol. 96, May 2010. [135] T. V. Perevalov, O. E. Tereshenko, V. A. Gritsenko, V. A. Pustovarov, A. P. Yelisseyev, C. Park, J. H. Han, and C. Lee, 'Oxygen deficiency defects in amorphous Al2O3,' Journal of Applied Physics, vol. 108, Jul 2010. [136] R. Rao and F. Irrera, 'Detrapping dynamics in Al2O3 metal-oxide-semiconductor,' Journal of Applied Physics, vol. 107, May 2010. [137] R. G. Southwick, J. Reed, C. Buu, R. Butler, G. Bersuker, and W. B. Knowlton, 'Limitations of Poole-Frenkel conduction in bilayer HfO2/SiO2 MOS devices,' IEEE Transactions on Device and Materials Reliability, vol. 10, pp. 201-207, Jun 2010. [138] D. C. Suh, Y. D. Cho, S. W. Kim, D. H. Ko, Y. Lee, M. H. Cho, and J. Oh, 'Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs,' Applied Physics Letters, vol. 96, Apr 2010. [139] X. F. Zheng, W. D. Zhang, B. Govoreanu, D. R. Aguado, J. F. Zhang, and J. Van Houdt, 'Energy and spatial distributions of electron traps throughout SiO2/Al2O3 stacks as the IPD in flash memory application,' IEEE Transactions on Electron Devices, vol. 57, pp. 288-296, Jan 2010. [140] G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels, 'Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition,' Journal of Applied Physics, vol. 110, Nov 2011. [141] C. C. Lin and J. G. Hwu, 'Comparison of the reliability of thin Al2O3 gate dielectrics prepared by in situ oxidation of sputtered aluminum in oxygen ambient with and without nitric acid compensation,' IEEE Transactions on Device and Materials Reliability, vol. 11, pp. 227- | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58253 | - |
| dc.description.abstract | With the aggressive downscaling of MOS devices in semiconductor industry, the high-k gate dielectrics continuously play significant roles to achieve small equivalent oxide thickness for high-performance logic technology. The low manufacturing cost and low-temperature process of high-k dielectrics are also of practical interests for display and solar cell industry. In this dissertation, the Al2O3 MOS devices using room-temperature sputtering followed HNO3 compensation technique were demonstrated. After HNO3 compensation, the surface roughness, interface trap density, flatband voltage, and leakage current would also be effectively improved. The better reliability performance was also observed in dielectric breakdown tests and ten-year lifetime projections. Moreover, the positive bias current of Al2O3 MOS devices without HNO3 compensation showed the irregular temperature response at temperature above 70 ℃, which is corresponding to Frenkel-Poole emission. In contrast, the generation-recombination current is the dominant component for the Al2O3 MOS devices with HNO3 compensation. Using the temperature-sensitive current characteristics, we successfully demonstrated the Al2O3 MOS tunneling temperature sensors with enhanced temperature sensitivity and improved power consumption in comparison with SiO2 and HfO2 sensors. Subsequently, the electrical nonuniformity of ultrathin SiO2 and HfO2 gate dielectrics was investigated. The effective uniform area ratio regarded as an indication of gate oxide quality can be extracted from the deep depletion of C-V characteristics. In our cases, the effective uniform area ratio increases with SiO2 thickness, whereas decreases with increasing equivalent oxide thickness of HfO2, which was also reconfirmed by the same trend of leakage current fluctuations and the constant field stress measurements. Furthermore, a particular edge-dependent inversion current behavior resulting from edge fringing effect was observed for MOS tunneling diodes. The inversion current would increase with increasing tooth spacing for comb-shaped MOS tunneling diodes. The results suggested that the current conduction would be controlled by the electron diffusion current between the teeth and hole tunneling current affected by Schottky barrier height lowering. Finally, the photosensitivity can be improved by reducing SiO2 thickness and selecting smaller tooth spacing for SiO2 comb-shaped MOS tunneling photodiodes. In addition, the HfO2 photodiodes demonstrated high and steady photosensitivity owing to the current conduction dominated by electron only and smaller conduction band offset. In appendix of this dissertation, the electrical transport and photoconductive characteristics of CdTe nanowire transistors were investigated, which cooperated with the NANI group in University of Southern California. The Sb doped CdTe nanowire transistors exhibited p-type conductivity. Two acceptor levels existing in energy bandgap of CdTe nanowire were found via low-temperature electrical measurements, which is exactly in agreement with the photoluminescence measurement results. In addition, the Sb doped CdTe nanowire transistors demonstrated significant photoresponse to visible-near-infrared irradiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:09:27Z (GMT). No. of bitstreams: 1 ntu-103-F97943170-1.pdf: 6342080 bytes, checksum: d87053b919a7edaffca0cfc3972fdb12 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
Abstract (Chinese) I Abstract (English) III Contents V List of Figure Captions XI List of Table Captions XIX Chapter 1 Introduction 1-1 Motivation 1 1-2 High-k Gate Dielectrics 5 1-3 Interface Issues in Advanced MOS Devices 7 1-4 Gate Oxide Reliability of MOS Devices 8 1-5 MOS Tunneling Temperature Sensors 9 1-6 MOS Tunneling Photodiodes 10 1-7 Thesis Overview 11 Chapter 2 Improvement in Physical and Electrical Characteristics of Low-Temperature Processing Al2O3 High-k Dielectrics Utilizing Nitric Acid Compensation Method 2-1 Introduction 17 2-2 Experimental Details 19 2-2-1 Fabrication of Al2O3 MOS Capacitors 19 2-2-2 Measurement Details 21 2-3 Physical Properties of Al2O3 High-k Dielectrics 21 2-3-1 Surface Topography of Al2O3 High-k Dielectrics 21 2-3-2 Microstructure and Elemental Analysis of Al2O3 MOS Capacitors 22 2-4 Electrical Properties of Al2O3 MOS Capacitors 23 2-4-1 Capacitance-Voltage Characteristics 23 2-4-2 Interface Properties 25 2-4-3 Current-Voltage Characteristics 26 2-4-4 Comprehensive Discussion of Electrical Characteristics 27 2-5 Summary 28 Chapter 3 Nitric Acid Compensated Al2O3 MOS Devices with Improved Negative Bias Reliability and Positive Bias Temperature Response 3-1 Introduction 41 3-2 Experimental Details 43 3-2-1 Fabrication of Al2O3 MOS Capacitors 43 3-2-2 Measurement Details 44 3-3 Comparison of Room-Temperature Reliability Performance for Al2O3 MOS Devices without and with Nitric Acid Compensation 44 3-3-1 Time-Zero Dielectric Breakdown Measurements 44 3-3-2 Time-Dependent Dielectric Breakdown CVS Measurements 46 3-3-3 Time-Dependent Dielectric Breakdown CCS Measurements 48 3-3-4 Illustration of Dielectric Breakdown Mechanism 50 3-4 Temperature-Dependent Negative Bias Reliability Analysis 52 3-4-1 Temperature-Dependent CVS Measurements 52 3-4-2 Ten-Year Lifetime Projection 53 3-5 Improvement of Positive Bias Temperature Response 54 3-5-1 Temperature-Dependent Current Conduction Behaviors 54 3-5-2 Fundamental Current Conduction Mechanism 55 3-5-3 Illustration of Current Instability (Higher Temperature Response) 58 3-6 Summary 61 Chapter 4 Performance Enhancement of MOS Tunneling Temperature Sensors by Employing Ultrathin Al2O3 High-k Dielectrics 4-1 Introduction 75 4-2 Experimental Details 77 4-2-1 Fabrication of MOS Tunneling Temperature Sensors 77 4-2-2 Measurement Details 79 4-3 Working Principle and Design Concept 80 4-3-1 Current Conduction Mechanism and Working Principle 80 4-3-2 Design Concept Description 82 4-4 Characterization of Al2O3 MOS Tunneling Temperature Sensors 84 4-4-1 Temperature-Sensitive Characteristics 84 4-4-2 Investigation of Dominant Current Conduction Mechanism 85 4-4-3 Cycling Reliability Performance 87 4-5 Comparison of SiO2, HfO2 and Al2O3 MOS tunneling Temperature Sensors 88 4-5-1 Enhanced Temperature Sensitivity by Employing Al2O3 Dielectrics 88 4-5-2 Saturation Voltage Improvement by Employing Al2O3 Dielectrics 89 4-5-3 Comprehensive Discussion of Three Kinds of Temperature Sensors.91 4-6 Summary 92 Chapter 5 Electrical Nonuniformity Phenomenon in Deep Depletion Capacitance-Voltage Behavior of MOS Capacitors with Ultrathin SiO2 and High-k Dielectrics 5-1 Introduction 105 5-2 Experimental Details 107 5-2-1 Fabrication of MOS Capacitors with SiO2 and HfO2 Dielectrics 107 5-2-2 Measurement Details 107 5-3 Deep Depletion Behaviors of Capacitance-Voltage Characteristics for MOS Capacitors with Ultrathin Oxides 108 5-3-1 Brief of Deep Depletion Behaviors in MOS Devices 108 5-3-2 Different Deep Depletion Behaviors of MOS Capacitors with SiO2 and HfO2 High-k dielectrics 109 5-4 Concept of Local Depletion Capacitance and Effective Uniform Area Ratio 5-4-1 Concept of Local Depletion Capacitance 110 5-4-2 Concept of Effective Uniform Area Ratio 112 5-5 Investigation of Electrical Nonuniformity in Ultrathin SiO2 and HfO2 High-k Dielectrics 116 5-5-1 Comparison of Electrical Nonuniformity in Ultrathin SiO2 and HfO2 High-k Dielectrics 116 5-5-2 Connection between Leakage Current and Electrical Nonuniformity 117 5-5-3 Relationship between Reliability and Electrical Nonuniformity 118 5-6 Summary 119 Chapter 6 Investigation on Edge Fringing Effect and Oxide Thickness Dependence of Inversion Current in MOS Tunneling Diodes with Comb-Shaped Electrodes 6-1 Introduction 131 6-2 Experimental and Design Concept of Electrode Patterns 134 6-2-1 Experimental and Measurement Details 134 6-2-2 Parameters of Square and Comb-Shaped Electrodes 135 6-3 Edge-Dependent Inversion Tunneling Current Behavior 136 6-3-1 Edge-Dependent Current-Voltage Characteristics 136 6-3-2 Current Conduction Mechanism and Device Simulation 137 6-4 Characteristics of MOS Tunneling Photodiodes with Ultrathin SiO2 and HfO2 High-k Dielectrics 141 6-4-1 Thickness-Dependent Inversion Current of SiO2 MOS tunneling diodes 141 6-4-2 Comparison of Inversion Current Photoresponse for MOS Tunneling Photodiodes with Ultrathin SiO2 and HfO2 High-k Dielectrics 142 6-5 Summary 144 Chapter 7 Conclusion and Perspective 7-1 Conclusion 157 7-2 Perspective and Future Work 160 Appendix Antimony Doped Cadmium Telluride Semiconductor Nanowires: Synthesis, Characterization and Application A-1 Introduction 163 A-2 Experimental Details 165 A-3 Morphologies and Structure Characterization 167 A-4 Electrical Transport and Photoluminescence Characteristics 168 A-5 Photodetector Performance 173 A-6 Summary 175 References 191 Publication List 213 | |
| dc.language.iso | en | |
| dc.subject | 碲化鎘奈米線 | zh_TW |
| dc.subject | 硝酸補償技術 | zh_TW |
| dc.subject | 高介電係數氧化層 | zh_TW |
| dc.subject | 金氧半元件 | zh_TW |
| dc.subject | 可靠度 | zh_TW |
| dc.subject | 不均勻度 | zh_TW |
| dc.subject | 金氧半穿隧式溫度感測器 | zh_TW |
| dc.subject | 金氧半穿隧式光二極體 | zh_TW |
| dc.subject | MOS tunneling photodiodes | en |
| dc.subject | nitric acid compensation technique | en |
| dc.subject | high-k oxides | en |
| dc.subject | reliability | en |
| dc.subject | nonuniformity | en |
| dc.subject | MOS tunneling temperature sensors | en |
| dc.subject | MOS devices | en |
| dc.subject | CdTe nanowire | en |
| dc.title | 超薄高介電係數介電層金氧半元件之特性分析及可靠度與靈敏度改善 | zh_TW |
| dc.title | Characterization and Improvement in Reliability and Sensitivity of Metal-Oxide-Semiconductor Devices with Ultrathin High-k Dielectrics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林浩雄(Hao-Hsiung Lin),曾俊元(Tseung-Yuen Tseng),連振炘(Chen-Hsin Lien),吳幼麟(You-Lin Wu),賴朝松(Chao-Sung Lai) | |
| dc.subject.keyword | 金氧半元件,硝酸補償技術,高介電係數氧化層,可靠度,不均勻度,金氧半穿隧式溫度感測器,金氧半穿隧式光二極體,碲化鎘奈米線, | zh_TW |
| dc.subject.keyword | MOS devices,nitric acid compensation technique,high-k oxides,reliability,nonuniformity,MOS tunneling temperature sensors,MOS tunneling photodiodes,CdTe nanowire, | en |
| dc.relation.page | 214 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-05-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
