請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林和 | |
| dc.contributor.author | Li-Ciao Hong | en |
| dc.contributor.author | 洪麗喬 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:08:53Z | - |
| dc.date.available | 2014-09-01 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-16 | |
| dc.identifier.citation | Anderson, B. T., 2004: Investigation of a Large-Scale Mode of Ocean–Atmosphere Variability and Its Relation to Tropical Pacific Sea Surface Temperature Anomalies. J. Clim., 17, 4089-4098.
——, and E. Maloney, 2006: Interannual Tropical Pacific Sea Surface Temperatures and Their Relation to Preceding Sea Level Pressures in the NCAR CCSM2. J. Clim., 19, 998-1012. ——, R. C. Perez, and A. Karspeck, 2013: Triggering of El Nino onset through trade wind–induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 1212-1216. Annamalai, H., S. Kida, and J. Hafner, 2010: Potential Impact of the Tropical Indian Ocean–Indonesian Seas on El Nino Characteristics*. J. Clim., 23, 3933-3952. Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Nino Modoki and its possible teleconnection. J. Geophys. Res., 112. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163-172. Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Nino events due to greenhouse warming. Nature Clim. Change, 4, 111-116. Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110. Chang, P., and Coauthors, 2007: Pacific meridional mode and El Nino-southern oscillation. Geophys. Res. Lett., 34. Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Clim., 15, 2616-2631. ——, and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim., 17, 4143-4158. Chiodi, A. M., and D. E. Harrison, 2007: Mechanisms of summertime subtropical southern Indian ocean sea surface temperature variability: On the importance of humidity anomalies and the meridional advection of water vapor. J. Clim., 20, 4835-4852. Choi, J., S.-I. An, S.-W. Yeh, and J.-Y. Yu, 2013: ENSO-Like and ENSO-Induced Tropical Pacific Decadal Variability in CGCMs. J. Clim., 26, 1485-1501. Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly Wind Bursts: ENSO’s Tail Rather than the Dog? J. Clim., 18, 5224-5238. Eskridge, R. E., J. Y. Ku, S. T. Rao, P. S. Porter, and I. G. Zurbenko, 1997: Separating Different Scales of Motion in Time Series of Meteorological Variables. Bull. Amer. Meteor. Soc., 78, 1473-1483. Fedorov, A. V., and S. G. Philander, 2001: A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Nino. J. Clim., 14, 3086-3101. Freeman, L. A., A. J. Miller, R. D. Norris, and J. E. Smith, 2012: Classification of remote Pacific coral reefs by physical oceanographic environment. Journal of Geophysical Research: Oceans, 117, C02007. Harrison, D. E., and G. A. Vecchi, 1997: Westerly Wind Events in the Tropical Pacific, 1986–95*. J. Clim., 10, 3131-3156. Hsieh, Pei-yun (2010) Maintenance of the Philippine Sea Anticyclone (Graduate institute of Atm.Sci. College of Science, National Taiwan University, Master’s thesis) Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Nino. Geophys. Res. Lett., 2014GL059370. Horii, T., and K. Hanawa, 2004: A relationship between timing of El Nino onset and subsequent evolution. Geophys. Res. Lett., 31, L06304,. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179-1196. Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean Dipole on the following year/'s El Nino. Nature Geosci, 3, 168-172. James, I. N., 1995: Introduction to Circulating Atmospheres. Cambridge University Press. Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res.-Atmos., 114. Jin, F.-F., 1997: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. J. Atmos. Sci., 54, 811-829. ——, S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708. ——, L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34. Johnson, N. C., and S. B. Feldstein, 2010: The Continuum of North Pacific Sea Level Pressure Patterns: Intraseasonal, Interannual, and Interdecadal Variability. J. Clim., 23, 851-867. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim., 22, 615-632. Karoly, D. J., 1989: Southern Hemisphere Circulation Features Associated with El Nino-Southern Oscillation Events. J. Clim., 2, 1239-1252. Keen, R. A., 1982: THE ROLE OF CROSS-EQUATORIAL TROPICAL CYCLONE PAIRS IN THE SOUTHERN OSCILLATION. Mon. Wea. Rev., 110, 1405-1416. Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian Oscillation into the ENSO Cycle. J. Clim., 13, 3560-3575. Kohl, A., D. Dommenget, K. Ueyoshi, and D. Stammer, 2006: The global ECCO 1952 to 2001 ocean synthesis, ECCO Report No.40. http://www.ecco-group.org/report_series.htm Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Nina? Geophys. Res. Lett., 38, L16704. ——, F.-F. Jin, and S.-I. An, 2009: Two Types of El Nino Events: Cold Tongue El Nino and Warm Pool El Nino. J. Clim., 22, 1499-1515. ——, K. P. Sooraj, T. Li, and F.-F. Jin, 2010: Precursors of the El Nino/La Nina onset and their interrelationship. J. Geophys. Res., 115, D05106. Kwok, R., and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Clim., 15, 487-501. L'Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Nino-Southern Oscillation and the extratropical zonal-mean circulation. J. Clim., 19, 276-287. Lau, N. C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere-ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Clim., 17, 245-265. Lengaigne, M., and G. Vecchi, 2010: Contrasting the termination of moderate and extreme El Nino events in coupled general circulation models. Clim Dyn, 35, 299-313. ——, and Coauthors, 2004: Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn, 23, 601-620. Levine, A. F. Z., and F.-F. Jin, 2010: Noise-Induced Instability in the ENSO Recharge Oscillator. J. Atmos. Sci., 67, 529-542. Lin, Y.-W., LinHo, and C. Chou, 2014: The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon. Environmental Research Letters, 9, 044003. MacQueen, J. B., 1967: Some Methods for Classification and Analysis of MultiVariate Observations. Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. L. Cam, and J. Neyman, Eds., University of California Press, 281-297. Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-Day Tropical Oscillation—A Review. Mon. Wea. Rev., 122, 814-837. McPhaden, M. J., 1999: Genesis and Evolution of the 1997-98 El Nino. Science, 283, 950-954. Meinen, C. S., and M. J. McPhaden, 2001: Interannual Variability in Warm Water Volume Transports in the Equatorial Pacific during 1993–99*. J. Phys. Oceanogr., 31, 1324-1345. Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Clim., 13, 3599-3610. Nakamura, J., U. Lall, Y. Kushnir, and S. J. Camargo, 2009: Classifying North Atlantic Tropical Cyclone Tracks by Mass Moments. J. Clim., 22, 5481-5494. Nigam, S., and S. C. Chan, 2009: On the Summertime Strengthening of the Northern Hemisphere Pacific Sea Level Pressure Anticyclone. J. Clim., 22, 1174-1192. Okumura, Y. M., and C. Deser, 2010: Asymmetry in the Duration of El Nino and La Nina. J. Clim., 23, 5826-5843. Park, J.-Y., S.-W. Yeh, J.-S. Kug, and J. Yoon, 2012: Favorable connections between seasonal footprinting mechanism and El Nino. Clim Dyn, 1-13. Park, Y. H., F. Roquet, and F. Vivier, 2004: Quasi-stationary ENSO wave signals versus the Antarctic Circumpolar Wave scenario. Geophys. Res. Lett., 31. Philander, S. G. H., 1990: El Nino, La Nina, and the Southern Oscillation.International Geophysics Series, Vol. 46, Academic Press, 293 pp. Picaut, J., F. Masia, and Y. du Penhoat, 1997: An Advective-Reflective Conceptual Model for the Oscillatory Nature of the ENSO. Science, 277, 663-666. Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. Journal of Marine Systems, 1, 71-96. Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407. Rodwell, M. J., and B. J. Hoskins, 1995: A Model of the Asian Summer Monsoon.Part II: Cross-Equatorial Flow and PV Behavior. J. Atmos. Sci., 52, 1341-1356. Rogers, J. C., 1981: The North Pacific Oscillation. Journal of Climatology, 1, 39-57. Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363. Santoso, A., and Coauthors, 2013: Late-twentieth-century emergence of the El Nino propagation asymmetry and future projections. Nature, 504, 126-130. Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228-1251. Seiki, A., and Y. N. Takayabu, 2007a: Westerly Wind Bursts and Their Relationship with Intraseasonal Variations and ENSO. Part II: Energetics over the Western and Central Pacific. Mon. Wea. Rev., 135, 3346-3361. ——, 2007b: Westerly Wind Bursts and Their Relationship with Intraseasonal Variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325-3345. Stephens, D. J., M. J. Meuleners, H. van Loon, M. H. Lamond, and N. P. Telcik, 2007: Differences in Atmospheric Circulation between the Development of Weak and Strong Warm Events in the Southern Oscillation. J. Clim., 20, 2191-2209. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192. ——, R. J. Stouffer, and G. A. Meehl, 2011: An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13, 1000-1016. Timmermann, A., F. F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Nino bursting. J. Atmos. Sci., 60, 152-165. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961-3012. Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997-98 El Nino. Part I: Mechanisms of oceanic change. J. Clim., 19, 2633-2646. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923-3926. ——, J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Clim., 16, 2668-2675. ——, M. Alexander, and A. Fontaine, 2009: Midlatitude Excitation of Tropical Variability in the Pacific: The Role of Thermodynamic Coupling and Seasonality*. J. Clim., 22, 518-534. Wang, B., and Q. Zhang, 2002: Pacific-east Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Nino development. J. Clim., 15, 3252-3265. ——, R. Wu, and X. Fu, 2000: Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim., 13, 1517-1536. Watanabe, M., and F. F. Jin, 2002: Role of Indian ocean warming in the development of Philippine sea anticyclone during ENSO. Geophys. Res. Lett., 29. ——, 2003: A moist linear baroclinic model: Coupled dynamical-convective response to El Nino. J. Clim., 16, 1121-1139. White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380, 699-702. Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315-324. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally Evolving Dominant Interannual Variability Modes of East Asian Climate. J. Clim., 22, 2992-3005. Wyrtki, K., 1975: El Nino—The Dynamic Response of the Equatorial Pacific Oceanto Atmospheric Forcing. J. Phys. Oceanogr., 5, 572-584. ——, 1985: Water displacements in the Pacific and the genesis of El Nino cycles. Journal of Geophysical Research: Oceans, 90, 7129-7132. Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340-350. Xu, J., and J. C. L. Chan, 2001: The Role of the Asian–Australian Monsoon System in the Onset Time of El Nino Events. J. Clim., 14, 418-433. Zhang, H., A. Clement, and P. Di Nezio, 2014: The South Pacific Meridional Mode: A Mechanism for ENSO-like Variability. J. Clim., 27, 769-783. Zhang, L., P. Chang, and L. Ji, 2009: Linking the Pacific Meridional Mode to ENSO: Coupled Model Analysis. J. Clim., 22, 3488-3505. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900-93. J. Clim., 10, 1004-1020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58232 | - |
| dc.description.abstract | 本研究中發現,在年代際變異的影響被濾除後,存在著一類相當獨特且具有極強振幅的聖嬰事件。此類聖嬰在本文中被稱為超級聖嬰,發生的年份分別是1972/1973年、1982/1983年以及1997/1998年。超級聖嬰的與眾不同不僅表現在強度上,它們更擁有其他聖嬰事件所沒有的特徵。其中的兩個特徵,在超級聖嬰肇始(onset)前就已出現,它們調整熱帶太平洋的環境,使其具備發展超級聖嬰的條件,因而引發超級聖嬰。第一個必要條件,在超級聖嬰達到最強時期的前13個月,以一特殊類型的反聖嬰事件在秋天展現,在本研究命名為”super-ma” (超級聖嬰之母)反聖嬰。super-ma反聖嬰有著看似矛盾的海氣配置,其沃克環流比平時更強,然中太平洋赤道上的海平面溫度距平(sea surface temperature anomaly, SSTA)卻偏向中性。較強的沃克環流在熱帶西太平洋堆積大量的正海洋表層熱含量距平,這些表層的暖水會逐漸向赤道集中,並在六個月後移動到東太平洋。此外,比起一般的反聖嬰其冷SSTA極大值位在中太平洋赤道的海溫配置,super-ma反聖嬰在此區的微弱SSTA讓其轉相成聖嬰更加容易。因此,上述的海氣配置構成有利聖嬰事件發生的環境。第二個必要條件為超級聖嬰發展年前的冬天於夏威夷以及菲律賓海所共同出現的兩個低壓系統。雖然夏威夷低壓與北太平洋震盪(North Pacific oscillation, NPO)之中的南側低壓看起來很相似,但它的位置卻比起傳統的NPO更加接近赤道,而菲律賓海低壓可視為反聖嬰時在西北太平洋所對應的大氣環流場,與聖嬰時的反氣旋環流相反。從冬天到春天這段時期,夏威夷低壓透過風-蒸發-海平面溫度反饋(wind-evaporation-SST feedback, WES feedback)以及Sverdrup平衡兩種機制擴大其環流場範圍,並且沿著東北-西南的軸線拉長,逐漸靠近中太平洋赤道地區,在春天時與菲律賓海低壓合併成一個大型低壓,盤距在北太平洋熱帶地區上。此大型低壓在赤道北側所帶來強烈的西風帶,加速了向東的表層洋流,將西太平洋的暖水向中太平洋輸送,並且也透過WES反饋機制,快速加熱此區的海表,因此,二、三月時中太平洋赤道地區SSTA已轉正。在四、五月時,東太平洋赤道上SSTA也因super-ma反聖嬰所囤積的暖水移動到此區底下變成暖海溫距平,所以整個赤道太平洋SSTA為正值,超級聖嬰在此刻肇始。同時,中太平洋赤道地區的北側也因海溫的增暖,形成了超級聖嬰發展的關鍵區域(0–7.5°N, 155°E–170°W)。在此區域,暖SSTA與增強的對流互相支持,增強的對流進而引發了超級聖嬰在發展時期最主要的特徵:從赤道到南半球的橫向環流。此橫向環流在北半球的夏季最顯著,其低層風場由澳洲附近的低層高壓旋出,並沿著澳洲東岸向赤道移動,回到中太平洋增強對流;而對流中心所對應的高層環流其中一分支往西南側流出,並連接到澳洲高壓的沉降區,成為橫向環流的高層風場。因此,透過此橫向環流,在熱帶西太平洋低層的西風距平會被加強,因而成為有效幫助超級聖嬰成長的加速器,使這些聖嬰事件發展為超級聖嬰。 | zh_TW |
| dc.description.abstract | A distinct class of El Nino events with extreme magnitude (termed “super El Nino” events in this study) is identified after removing decadal variation. These events occurred in 1972/1973, 1982/1983 and 1997/1998. They are distinguished not only by their size but also by associated features that are not similarly robust in other El Nino events. Two major features emerge before a super El Nino onset and precondition the tropical Pacific, thus triggering a super El Nino. The earliest feature is a special type of La Nina which can be recognized at least 13 months before the peak of super El Nino events. This “super-ma” (the mother of super El Nino events) La Nina drives a highly-organized Walker cell yet holds the central equatorial Pacific SST anomaly in a nearly neutral state. The enhanced Walker cell stashes a large amount of positive heat content anomaly in the western tropical Pacific, which gradually converges into the equatorial Pacific and propagates to the eastern Pacific after 6 months. The small negative SST anomaly in central equatorial Pacific facilitates a fast phase turning in comparison to regular La Nina events. Thus both constitute favorable conditions for the onset of an El Nino event. At the end of the year before super El Nino onset, the simultaneous emergence of two low SLP systems, the Hawaii low and the Philippine Sea low, provides another necessary condition. Although the Hawaii low resembles the southern lobe of the north Pacific Oscillation (NPO), its location is much equatorward than the conventional NPO, and the Philippine Sea low can be regarded as an anti-phase of the low-level Philippine Sea anticyclone during a La Nino event. As winter advancing, the Hawaii Low expands, elongates along NE-SW axis and reaches the central equatorial Pacific following the wind-evaporation-SST (WES) feedback and the Sverdup balance, and two low systems merge in the early spring. With the union of the Hawaii low and the Philippine Sea low, a broad area of low-level westerly winds drives an eastward current along the northern flank of the equator that further warms SST in addition to the WES feedback. As a result, in April-May, a key box region (0–7.5°N, 155°E–170°W) is formed in the northern-central equatorial Pacific when the eastern equatorial Pacific SST anomaly turn positive (super El Nino onset) by the subsurface warm water due to the super-ma La Nina. Within this key box, anomalous warm SST and convection are sustained and the enhanced convection initiates a Southern Hemispheric transverse circulation, another unique feature of a super El Nino when it develops. This transverse circulation is characterized by a low-level equatorward flow, which spins off from a high sea-level-pressure anomaly around Australia and then merges into the deep convection anomalies over the central Pacific, and by a upper-level southward divergent flow, which branches off from the convection center and connects to the subsidence of the Australia high. It is suggested that this transverse cell, peaking in boreal summer, serves as an effective booster during the developing stage of a super El Nino by intensifying the low-level westerly winds in the tropical Pacific. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:08:53Z (GMT). No. of bitstreams: 1 ntu-103-D97229004-1.pdf: 10120660 bytes, checksum: c8cd052809f7d1b2077364c70d04cc12 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xvii Chapter 1 Introduction 1 1.1 Super El Nino 1 1.2 Topics and literature review 2 Chapter 2 Data 6 Chapter 3 How to distinguish a super El Nino? 8 3.1 Cluster analysis 8 3.2 Unique signatures of a super El Nino 10 3.2.1 Features associated with the evolution of a super El Nino 10 a. Upper-ocean heat content in the western tropical Pacific 10 b. Nino-3 SST evolution 11 3.2.2 Pre-Nino to onset stage 12 a. Super-ma La Nina 12 b. Philippine Sea low and Hawaii low in D(-1)JFM(0) 12 c. Upper-ocean circulation in spring 13 d. Pacific meridional mode and the associated enhanced convection in AM(0) 15 3.2.3 Developing stage 15 a. Nino-3 SST tendency 15 b. A Southern Hemisphere transverse cell 16 c. Teleconnection in the Southern Hemisphere 16 3.2.4 Summary 17 Chapter 4 How to trigger a super El Nino? 19 4.1 Precondition 1: super-ma La Nina 19 4.2 Precondition 2: simultaneous emergence of the Hawaii low and Philippine Sea low 22 4.2.1 Sprawling of the Hawaii low 23 4.2.2 Philippine Sea low 26 4.3 Onset of a super El Nino 29 Chapter 5 Southern Hemisphere Booster 32 Chapter 6 Preliminary result of model analysis 36 6.1 Super El Nino identification 36 6.2 Super El Nino behaviors 36 Chapter 7 Conclusions and Future work 38 7.1 Conclusions 38 7.2 Future work 40 References 42 Appendix 91 A1. Sverdrup adjustment 91 A2. Oceanic mixed layer heat budget 91 | |
| dc.language.iso | en | |
| dc.subject | 聖嬰 | zh_TW |
| dc.subject | 超級聖嬰 | zh_TW |
| dc.subject | 先決條件 | zh_TW |
| dc.subject | super-ma 反聖嬰 | zh_TW |
| dc.subject | 南半球加速器 | zh_TW |
| dc.subject | El Nino | en |
| dc.subject | super El Nino | en |
| dc.subject | precondition | en |
| dc.subject | super-ma La Nina | en |
| dc.subject | Southern Hemisphere booster | en |
| dc.title | 超級聖嬰 | zh_TW |
| dc.title | Super El Nino | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 隋中興,許晃雄,楊舒芝,吳健銘,羅敏輝 | |
| dc.subject.keyword | 聖嬰,超級聖嬰,先決條件,super-ma 反聖嬰,南半球加速器, | zh_TW |
| dc.subject.keyword | El Nino,super El Nino,precondition,super-ma La Nina,Southern Hemisphere booster, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-05-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 9.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
