請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富(Jean-Fu Kiang) | |
| dc.contributor.author | Yu-Tsung Lo | en |
| dc.contributor.author | 羅育聰 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:08:40Z | - |
| dc.date.available | 2016-07-22 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-21 | |
| dc.identifier.citation | [1] S. H. Yang and C. K. C. Tzuang, “130-nm CMOS K-band two-element differential power-combining oscillators,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 3, pp. 1174-1185, Mar. 2013.
[2] J. Birkeland and T. Itoh, “A 16 element quasi-optical FET oscillator power combining array with external injection locking,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 3, pp. 475-481, Mar. 1992. [3] R. A. York and T. Itoh, “Injection and phase locking techniques for beam control,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 11, pp. 1920-1929, Nov. 1998. [4] P. Liao and R. A. York, “A new phase-shifterless beam-scanning technique using arrays of coupled oscillators,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 10, pp. 1810-1815, Oct. 1993. [5] L. Wu, A. Li, and H. C. Luong, “A 4-path 42.8-to-49.5 GHz LO generation with automatic phase tuning for 60 GHz phased-array receivers,” IEEE J. Solid-State Circuits,vol. 48, no. 10, pp. 2309-2322, Oct. 2013. [6] J. Lin and T. Itoh, “Active integrated antennas,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2186-2194, Dec. 1994. [7] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 937-944, Mar. 2002. [8] R. A. York, “Nonlinear analysis of phase relationships in quasi-optical oscillator arrays,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 10, pp. 1799-1809, Oct. 1993. [9] K. D. Stephan and W. A. Morgan, “Analysis of inter-injection-locked oscillators for integrated phased arrays,” IEEE Trans. Antennas Propagat., vol. 35, no. 7, pp. 771-781, July 1987. [10] J. D. Neff, B. K. Meadows, E. A. Brown, S. P. DeWeerth, and P. Hasler, “A CMOS coupled nonlinear oscillator array,” IEEE Int. Symp. Circ. Syst. vol. 4, pp.IV-301-304, 2002. [11] Y. M. Tousi, O. Momeni, and E. Afshari, “A novel CMOS high-power terahertz VCO based on coupled oscillators: Theory and implementation,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3032-3042, Dec. 2012. [12] J. J. Lynch and R. A. York, “Stability of mode locked states of coupled oscillator arrays,” IEEE Trans. Circuits Syst. I, vol. 42 no. 8, pp. 413-418, Aug. 1995. [13] S. Nogi, J. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 10, pp. 1827-1837, Oct. 1993. [14] A. Georgiadis, A. Collado, and A. Suarez, “New techniques for the analysis and design of coupled-oscillator systems,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 11, pp. 3864-3877, Nov. 2006. [15] R. A. York, P. Liao, and J. J. Lynch, “Oscillator array dynamics with broadband Nport coupling networks,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 11, pp. 2040-2045, Nov. 1994. [16] R. J. Pogorzelski, “On the design of coupling networks for coupled oscillator arrays,” IEEE Trans. Antennas Propagat., vol. 51, no. 4, pp. 794-801, Apr. 2003. [17] J. I. Martinez-Lopez, R. Moussounda, and R. G. Rojas,“Non-reciprocal coupling network for beam-steering coupled oscillator arrays,” IET Microwave Antennas Propagat., vol. 5, no. 8, pp. 940-947, 2011. [18] J. J. Lynch and R. A. York, “Synchronization of oscillators coupled through narrowband networks,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 2, pp. 237-249, Feb. 2001. [19] R. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386-1410, Oct. 1973. [20] V. Seetharam and L. W. Pearson, “Analysis of strong coupling in coupled oscillator arrays,” IEEE Trans. Antennas Propagat., vol. 58, no. 4, pp.1067-1075, Apr. 2010. [21] H. Jiang and R. Penno, “Effects of amplitude dynamics on beam steering and shaping in coupled oscillator array,” IEEE Antennas Wireless Propagat. Lett., vol. 9, pp.474-477, 2010. [22] Herran et al, “Analysis of phase distribution errors in mutually coupled harmonic selfoscillating mixers,” IEEE Trans. Microwave Theory Tech., Vol. 57, no. 12, pp. 2853- 2861, Dec. 2009. [23] R. J. Pogorzelski, “Generalization of the linearized discrete model of coupled oscillator arrays to account for coupling delay,” Radio Sci., vol. 43, RS4070, 2008. [24] P. Maffezzoni, “Synchronization analysis of two weakly coupled oscillators through a PPV macromodel,” IEEE Trans. Circuits Syst. I, vol. 57 no. 3, pp. 654-663, Mar. 2010. [25] M. Ionita, D. Cordeau, J. M. Paillot, S. Bachir, and M. Iordache, “A CAD tool for an array of differential oscillators coupled through a broadband network,” Int. J. RF Microwave Computer-Aided Eng., vol. 23, no. 2, 2013. [26] S. H. Strogatz and R. E. Mirollo, “Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies,” Physiza D, vol. 33, pp. 143-168, 1988. [27] J. Shen and L. W. Pearson, “The phase error and beam-pointing error in coupled oscillator beam-steering arrays,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, pp. 386-393, Jan. 2005. [28] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, pp. 384-391, Wiley-Interscience, 1990. [29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, Waves Electrons, vol. 34, pp. 351-357, June 1946. [30] F. Ellinger, Radio Frequency Integrated Circuits and Technologies, pp. 385-387, Springer, 2007. [31] B. Martineau, O. Richard, N. Rolland, A. Cathelin, and A. Kaiser, “A 20-23 GHz coupled oscillators array in 65 nm CMOS for HDR 60 GHz beamforming applications,” Euro. Solid State Circuit Conf., pp. 463-466, Helsinki, Finland, Sept. 2011. [32] J. Lopez, D. Y. C. Lie, B. K. Meadow, and J. Cothern, “Fully-integrated 1-dimensional RF coupled-oscillator network for phase-shifterless phased array systems,” IEEE Bipolar/BiCMOS Circuit Tech. Meeting, pp. 17-20, Portland, Oregon, USA, Oct. 2010. [33] B. van der Pol, “The nonlinear theory of electric oscillations,” Proc. IRE, vol. 22, pp. 1051-1085, Sept. 1934. [34] D. E. J. Humphrey, V. F. Fusco, and S. Drew, “Active antenna array behavior,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 8, pp. 1819-1825, Aug. 1995. [35] D. Cordeau, M. Ionita, J. M. Paillot, and M. Iordache, “New formulation of the equations describing the locked states of two Van der Pol oscillators coupled through a broadband network - application to the design of two differential coupled VCOs,” Freq. J. RF-Eng. Telecommun., vol. 67, issue 7-8, pp. 237-247, 2013. [36] D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, 4th ed., chapter 8, Oxford University Press, 2007. [37] R. J. Pogorzelski and A. Georgiadis, Coupled-Oscillator Based Active-Array Antennas, ch. 8, John Wiley, 2012. [38] A. Collado and A. Georgiadis, “Performance of coupled-oscillator arrays with anglemodulated injection signals,” IEEE Trans. Circuits Syst. I, vol. 7 no. 9, pp. 2343-2352, Sept. 2010. [39] S. H. Yan and T. H. Chu, “A beam-steering antenna array using injection locked coupled oscillators with self-tuning of oscillator free-running frequencies,” IEEE Trans. Antennas Propagat., vol. 56, no. 9, pp. 2920-2928, Sept. 2008. [40] A. Suarez, F. Ramirez, and S. Sancho, “Stability and noise analysis of coupled-oscillator systems,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 4, pp. 1032-1046, Apr. 2011. [41] X. Zhang, I. Mukhopadhyay, R. Dokania, and A. B. Apsel, “A 46-μW self-calibrated gigahertz VCO for low-power radios,” IEEE Trans. Circuit Syst. II, vol. 58, no. 12, Dec. 2011. [42] “Boosting PLL design efficiency, from free-running VCO characterizations to closedloop PLL evaluations,” appl. note, http://cp.literature.agilent.com/litweb/pdf/5989-9848EN.pdf [43] R. E. Collin, Foundations for Microwave Engineering 2nd Ed., pp. 327, McGraw-Hill, Inc. 1992. [44] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: Generalized Adler’s equation and geometrical interpretation,” IEEE Custom Integrated Circuit Conf. (CICC), pp.737-740, San Jose, CA, USA, Sept. 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58223 | - |
| dc.description.abstract | 在本篇論文中,我們提出了一個改良式的Y 參數模型去模擬耦和震盪器陣列的行為。當把震盪頻率的隨機性納入考量時,我們所提出的行為模型可以應用在蒙地卡羅模擬中去分析大型的震盪器陣列。為了分析在不同的耦合強度下耦合震盪器的行為,我們提出了一個可調式耦合網路,能夠確保震盪器在不同的耦合強度下都能夠震盪。震盪器及耦合網路的設計是基於台積電0.18微米製程,Y參數在10GHz附近出萃取以用在之後的數值模擬。描述耦合震盪器陣列的方程式可以用四階的隆格-庫塔法求解。本模型可以得到比傳統Y參數模型更加的準確度並且比用全電路模擬節省時間。本模型可以用在找出耦合震盪器陣列所能達到的最大震盪器個數。我們發現強耦合可以容許約11個震盪器的同步。此外,因為我們提出是一個時域的模型,可以讓我們易於判定穩定性並且可以得到在鎖定過程中頻率對時間的響應。於相位陣列系統時,藉由調整陣列前後兩端震盪器的自震頻率,可調整震盪器間的相位差。我們分析出可以藉由注入相位的方式,使不同的震盪器陣列同步,進而產生一個更大的耦合震盪器陣列。 | zh_TW |
| dc.description.abstract | In this thesis, a modified Y-parameters approach is proposed to model the behavior of coupled oscillator arrays (COA’s). A better behavior model enables us to investigate a large oscillator array with random free-running frequency distribution by using Monte-Carlo simulation. A coupling network with tunable coupling strength is proposed, so the phenomena of a COA under different coupling strengths can be observed. The parameters of oscillators and the coupling network are obtained based on the TSMC 0.18 μm process, and their Y parameters are extracted around 10 GHz for numerical solution. The governing equation of the proposed Y parameters approach is solved by using fourth-order Runge-Kutta method. The results are verified with full-circuit simulations and compared to other behavior models, including the Adler’s equation and the conventional Y-parameters approach. Our approach provides better accuracy than other behavior models as well as saves much simulation time comparing to full-circuit simulation. Our proposed method is applied to estimate the maximum allowable number of oscillators that can be synchronized. We discover that stronger couple leads to a larger allowable size up to 11. Since our approach is a time domain model,it provides easy check of stability as well as enable us to observe the frequency transition of the COA during the synchronization process. The inter-element phase shift of a COA is controlled by tuning the free-running frequencies of oscillators at both ends. We propose a phase injection scheme to synchronize multiple COA’s by injection and control the signal with variable phase to the center oscillator of each COA. Hence, the effective maximum
number of oscillators can be significantly increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:08:40Z (GMT). No. of bitstreams: 1 ntu-103-D98942006-1.pdf: 3211331 bytes, checksum: 8c31257928131ad16fb4aba9bc2dd433 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Oscillator Arrays for Beam-Steering . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Behavior Models of COA’s 7 2.1 Y-Parameters Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Adler’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Modified Y-Parameters Approach . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Design and Modeling of Coupling Network and VCO 14 3.1 The Coupling Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Voltage-Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Verification of Modified Y -Parameters Approach 27 4.1 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Analytic Solution to the Simplified Model . . . . . . . . . . . . . . . . . . . 31 5 Synchronization of Multiple COA’s 34 5.1 Randomness of Free-Running Frequencies . . . . . . . . . . . . . . . . . . . . 36 5.2 Synchronization by Phase Injection . . . . . . . . . . . . . . . . . . . . . . . 39 6 Conclusion 43 Bibliography 47 Publicatio list of Yu-Tsung Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 | |
| dc.language.iso | en | |
| dc.subject | 震盪器陣列 | zh_TW |
| dc.subject | 相位陣列 | zh_TW |
| dc.subject | 耦合 | zh_TW |
| dc.subject | 蒙地卡羅分析 | zh_TW |
| dc.subject | oscillator array | en |
| dc.subject | phased array | en |
| dc.subject | coupling | en |
| dc.subject | Monte-Carlo analysis | en |
| dc.title | 使用改良式Y參數法以分析強耦合震盪器陣列 | zh_TW |
| dc.title | A Modified Y-Parameters Approach for Analyzing Strongly
Coupled Oscillator Arrays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 瞿大雄(Tah-Hsiung Chu),劉深淵(Shen-Iuan Liu),陳怡然(Yi-Jan Chen),李泰成(Tai-Cheng Lee) | |
| dc.subject.keyword | 震盪器陣列,相位陣列,耦合,蒙地卡羅分析, | zh_TW |
| dc.subject.keyword | oscillator array,phased array,coupling,Monte-Carlo analysis, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-05-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
