Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58211
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorYi-Ting Wangen
dc.contributor.author王翊亭zh_TW
dc.date.accessioned2021-06-16T08:08:22Z-
dc.date.available2014-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-05-29
dc.identifier.citationCh1 References
[1] K. Krane, Modern physics 2nd edition, Wiley and Sons press (1996).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 3034 (1996).
[3] I. H. Tan, C. Reaves, A.L. Holmes, Jr., E.L. Hu, J. E. Bowers, and S. DenBaars, Electron. Lett. 31, 588 (1995).
[4] A. A. Penin, Phys. Rev. B 79, 113303 (2009).
[5] K. von Klitzing, Phil. Trans. R. Soc. A 363, 2203 (2005).
[6] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[7] F. Schopfer, and W. Poirier, J. Appl. Phys. 102, 054903 (2007).
[8] A. Hartland, K. Jones, J. M. Williams, B. L. Gallagher, and T. Galloway, Phys. Rev. Lett. 66, 969 (1991).
[9] H. L. Stormer, A. Chang, D. C. Tsui, J. C. M. Hwang, A. C. Grossard, and W. Wiegmann, Phys. Rev. Lett. 50, 1953 (1983).
[10] K. S. Cho, C.-T. Liang, Y. F. Chen, K. S. Cho, C.-T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, Phys. Rev. B 75, 085327 (2007).
[11] C. H. W. Barnes, Quantum electronic in semiconductors, Cavendish laboratory, University of Cambridge.
[12] L. J. LeBlanc, K. Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proceedings of the National Academy of Sciences 109,10811(2012)
[13] S. Datta, Quantum transport: atom to transistor, Cambridge University press (2005).
Ch2 References
[1] J. Weis and K. von Klitzing, Phil. Trans. R. Soc. A, 369, 3954 (2011).
[2] C. H. W. Barnes, Quantum electronic in semiconductors, Cavendish laboratory, University of Cambridge.
[3] R. E. Prange, Phys. Rev. B 23, 4802 (1981).
[4] H. Aoki and T. Ando, Solid state Commun. 38, 1079 (1981).
[5] H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B, 33, 22 (1985).
[6] S. Kivelson, D.-H Lee, and S. C. Zhang, Phys. Rev. B, 46 2223 (1992).
[7] H. W. Jiang, C. E. Johnson, K. L. Wang, and S. T. Hannahs, Phys. Rev. Lett. 71 1439 (1993).
[8] R. J. F. Hughes, J. T. Nicholls, J. E. F. Frost, E. H. Linfield, M. Pepper, C. J. B. Ford, D. A. Ritchie, G. A. C. Jones, E. Kogan, and M. Kaveh M, J. Phys.: Condens. Matter 6, 4763 (1994).
[9] A. M. Dykhne and I. M. Ruzin, Phys. Rev. B 50, 4 (1994).
[10]S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).
Ch3 References
[1] A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Phys. Rev. Lett. 16, 901 (1966).
[2] T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).
[3] T. Ando, Y. Matsumoto, and Y. Uemura, J. Phys. Soc. Jpn. 39, 279 (1975).
[4] A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986).
[5] J. H. Chen, D. R. Hang, C. F. Huang, T.-Y. Huang, J. Y. Lin, S. H. Lo, J. C. Hsiao, M.-G. Lin, M. Y. Simmons, D. A. Ritchie, and C.-T. Liang, J. Korean Phys. Soc. 50, 776 (2007).
[6] G. W. Martin, D. L. Maslov, and M. Y. Reizer, Phys. Rev. B 68, 241309 (2003).
[7] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[8] S. Kivelson, D.-H. Lee, and S.-C. Zhang 1992 Phys. Rev. B 46, 2223 (1992).
[9] H. W. Jiang, C. E. Johnson, K. L. Wang, and S. T. Hannahs, Phys. Rev. Lett. 71, 1439 (1993).
[10] R. J. F. Hughes, J. T. Nicholls, J. E. F. Frost, E. H. Linfield, M. Pepper, C. J. B. Ford, D. A. Ritchie, G. A. C. Jones, E. Kogan, and M. Kaveh, J. Phys.: Condens. Matter 6, 4763 (1994).
[11] S. H. Song, D. Shahar, D. C. Tsui, Y. H. Xie, and D. Monroe, Phys. Rev. Lett. 78, 2200 (1997).
[12] C. H. Lee, Y. H. Chang, Y. W. Suen, and H. H. Lin, Phys. Rev. B 56, 15238 (1997).
[13] I. P. Smorchkova, N. Samarth, J. M. Kikkawa, and D. D. Awschalom, Phys. Rev. B 58, 4238 (1998).
[14] T. Y. Huang, J. R. Juang, C. F. Huang, G.-H. Kim, C.-P. Huang, C.-T. Liang, Y. H. Chang, Y. F. Chen, Y. Lee, and D. A. Ritchie, Physica E 22, 240 (2004).
[15] T. Y. Huang, C.-T. Liang, G.-H. Kim, C. F. Huang, C.-P Huang, J.-Y. Lin, H. S. Goan, and D. A. Ritchie, Phys. Rev. B 78, 113305 (2008).
[16] K. Y. Chen, Y. H. Chang, C.-T. Liang, N. Aoki, Y. Ochiai, C.F. Huang, L.-H. Lin, K. A. Cheng, H. H. Cheng, H. H. Lin, J.-Y. Wang and S.-D. Lin, J. Phys.: Condens. Matter 20, 295223 (2008).
[17] S. T. Lo, K. Y. Chen, T. L. Lin, L.-H. Lin, D.-S Luo, Y. Ochiai, N. Aoki, Y. T. Wang, Z. F. Peng, Y. Lin, J. C. Chen, S.-D Lin, C. F. Huang, and C.-T. Liang, Solid State Commun. 150, 1902 (2010).
[18] B. Huckestein, Phys. Rev. Lett. 84, 3141 (2000).
[19] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, V. A. Larionova, A. K. Bakarov, and B. N. Zvonkov, Phys. Rev. B 74, 045314 (2006).
[20] D. R. Hang, C. F. Huang, and K. A. Cheng, Phys. Rev. B 80, 085312 (2009).
[21] V. Dobrosavljević, E. Abrahams, E. Miranda, and S. Chakravarty, Phys. Rev. Lett. 79, 455 (1997).
[22] Y. Dubi, Y. Meir, and Y. Avishai, Phys. Rev. Lett. 94, 156406 (2005).
[23] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).
[24] W. R. Clarke, C. E. Yasin, A. R. Hamilton, A. P. Micolich, M. Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper, and D. A. Ritchie, Nat. Phys. 4, 55 (2008).
[25] M. Nita, A. Aldea, and J. Zittartz, Phys. Rev. B 62, 15367 (2000).
[26] M. Nita, private communications
[27]G. Xiong, S.-D Wang, Q. Niu, D.-C Tian, and X. R. Wang, Phys. Rev. Lett, 87, 216802 (2001).
[28] C. F. Huang, Y. H. Chang, C. H. Lee, H. T. Chou, H. D. Yeh, C.-T. Liang, Y. F. Chen, H. H. Lin, H. H. Cheng, and G. J. Hwang, Phys. Rev. B 65, 045303 (2002).
[29] M. Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, and D. A. Ritchie, Phys. Rev. Lett. 84, 2489 (2000).
[30] D. R. Hang, C. F. Huang, Y. W. Zhang, H. D. Yeh, J. C. Hsiao, and H. L. Pang, Solid State Commun. 141, 17 (2007).
[31] K. H. Gao, G. Yu, Y. Zhou, L.Wei, T. Lin, L. Y. Shang, L. Sun, R. Yang, W. Z. Zhou, N. Dai, J. H. Chu, D. G. Austing, Y. Gu, and Y. G. Zhang, J. Appl. Phys. 108, 063701 (2010).
[32] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, and Y. H. Xie, Phys. Rev. B 62, 6940 (2000).
[33] S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).
[34] C. F. Huang, Y. H. Chang, H. H. Cheng, Z. P. Yang, S. Y. Wang, H. D. Yeh, H. T. Chou, C. P. Lee, and G. J. Hwang, Solid State Commun. 126, 197 (2003).
[35] W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009).
[36] S. Murzin, JETP Lett. 91, 155 (2010).
[37] H. I. Cho, G. M. Gusev, Z. D. Kvon, V. T. Renard, J.-H. Lee, and J. C. Portal, Phys. Rev. B 71, 245323 (2005).
[38] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, B. N. Zvonkov, E. A. Uskova, and A. A. Birukov, Phys. Rev. B 65, 235322 (2002).
[39] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, and B. N. Zvonkov, Phys. Rev. B 82, 035306 (2010).
[40] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, V. I. Shashkin, O. I. Khrykin, and B. N. Zvonkov, Phys. Rev. B 67, 205306 (2003).
[41] K. E. J. Goh, M. Y. Simmons, and A. R. Hamilton, Phys. Rev. B 77, 235410 (2008).
[42]T. Y. Huang, C.-T. Liang, G. H. Kim, C. F. Huang, C. P. Huang, and D. A. Ritchie, Physica E 42, 1142 (2010).

Ch4 References
[1]S. Kivelson, D.-H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223 (1992).
[2]D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, Phys. Rev. Lett. 79, 479 (1997).
[3]Y. Huo, R. E. Hetzel, and R. N. Bhatt, Phys. Rev. Lett. 70, 481(1993).
[4] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
[5] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[6] B. P. Dolan, Phys. Rev. B 62, 10278 (2000).
[7] B. P. Dolan, SIGMA 3, 101 (2007).
[8] B. P. Dolan, J. Phys. A: Math. Theor. 44, 175001 (2011)
[9] C. A. Lutken and G. G. Ross, Phys. Rev. B 45, 11837 (1992); Phys. Rev. B 48, 2500 (1993); Phys. Lett. A 356, 382 (2006); Implications of experimental probes of the RG-flow in quantum Hall systems, [arXiv:0906.5551].
[10] A. Shapere and F. Wilczek, Nucl. Phys. B 320, 669695 (1989).
[11] C. A. Lutken, J. Phys. A: Math. Gen. 26, L811 (1993); C. A. Lutken, Nucl. Phys. B 396, 670 (1993).
[12] A. M. Dykhune and I. M. Ruzin, Phys. Rev. B 50, 2369 (1994); C. P. Burgess, R. Dib, and B. P. Dolan, Phy. Rev. B 62, 15359 (2000).
[13] C. F. Huang, Y. H. Chang, H. H. Cheng, Z. P. Yang, H. D. Yeh, C. H. Hsu, C.-T. Liang, D. R. Hang, and H. H. Lin, J. Phys.: Condens. Matter 19, 026205 (2007).
[14] D. R. Hang, R. B. Dunford, G.-H. Kim, H. D. Yeh, C. F. Huang, D. A. Ritchie, I. Farrer, Y. W. Zhang, C.-T. Liang, and Y. H. Chang, Microelectron. J. 36, 469 (2005); C. F. Huang, Y. H. Chang, H. H. Cheng, C.-T. Liang, and G. J. Hwang Physica E 22, 232 (2004).
[15] B. P. Dolan, Phys. Rev. B 82, 195319 (2010).
[16] Y. Georgelin, Y. Masson, and J.-C. Wallet, J. Phys. A: Math. Gen. 33, 39 (2000).
[17] J. Nissinen and C. A. Lutken, Phys. Rev. B 85, 155123 (2012).
[18] G.-H. Kim, C.-T. Liang, C. F. Huang, J. T. Nicholls, D. A. Ritchie, P. S. Kim, C. H. Oh, J. R. Juang, and Y. H. Chang, Phys. Rev. B 69, 073311 (2004).
[19] S. S. Murzin, M. Weiss, D. A. Knyazev, A. G. M. Jansen, and K. Eberl, Phys. Rev. B 71, 155328 (2005).
[20] M. M. Folger and B. I. Shklovskii, Phys. Rev. B 52, 17366 (1995).
[21] M. J. Uren, R. A. Davies, M. Kaveh, and M. Pepper, J. Phys. C: Solid State Phys. 14, 5737 (1981).
[22] M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and D. Monroe, Nature 395, 675 (1998).
[23] P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
[24] D. R. Hang, C. F. Huang, Y. W. Zhang, H. D. Yeh, J. C. Hsiao, and H. L. Pang, Solid State Commun. 141, 17 (2007).
[25] G. D. Mahan, Many-Particle Physics 3rd edn (New York:Kluwer Academic/ Plenum) (2000).
[26] T. Kramer, Int. J. Mod. Phys. 20, 1243 (2006).
Ch5 References
[1] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[2] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 347 (1982).
[3] D. J. Newson, M. Pepper, and T. J. Thornton, Phil. Mag. B 56,775 (1987)
[4] B. L. Altshuler and A. G. Aronov in Electron-Electron Interaction in Disordered Systems, (North-Holland, Amsterdam ,1985)
[5] Yu. G. Arapov, G. I. Harus, N. G. Shelushinina, and M. V. Yakunin, Low Temp. Phys. 30, 11 (2004).
[6] K. Han, B. Shen, N. Tang, Y. Q. Tang, X. W. He, Z.X. Qin, Z. J. Yang, G. Y. Zhang, T. Lin, B. Zhu, W. Z. Zhou, and J. H. Chu, Phys. Lett. A, 366, 267 (2007).
[7] A. Y. Kuntsevich, G. M. Minkov, A. A. Sherstobitov, and V. M. Pudalov, Phys. Rev. B 79, 205319 (2009).
[8] I. B. Berkutov, V. V. Andrievskii, Y. F. Komnik, T. Hackbarth, D. R. Leadley, and O. A. Mironov, J. Low Temp. Phys. 168, 285 (2012).
[9] G. M. Minkov, O. E. Rut, A. V. Germanenko, and A. A. Sherstobitov, Phys. Rev. B 67 205306 (2003).
[10] A K. Savchenko, Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 219 (2002).
[11] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).
[12] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 201201 (2001).
[13] T. A. Sedrakyan and M. E. Raikh, Phys. Rev. Lett. 100,106806 (2008).
[14] T. A. Sedrakyan, E. G. Mishchenko, and M. E. Raikh, Phys. Rev. Lett. 99, 036401 (2007).
[15] B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288(1980).
[16] S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).
[17] A. M. Finkelstein, Sov. Phys. JETP 57,97 (1983).
[18] S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 (1994) .
[19] E. M. Lifshitz and L. P. Pitaevskii, Landau and Lifshitz, Course of Theoretical Physics, 9, Pergamon Press (1980).
[20] I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves Random Media 9, 201 (1999).
[21] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 83, 164 (1999).
[22] A. Gold and V. T. Dolgopolov, Phys. Rev. B 33, 1076 (1986).
[23] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitzky, J. Phys. C: Solid State Phys. 15, 7367(1982).
[24] J. J. Lin and J. P. Bird, J. Phys.: Condens. Matter 14, 501(2002).
[25] E. M. Lifshits and L. P. Pitaevskii, Statistical Physics Part II, (Pergamon, New York, 1986).
[26] J. H. Chen, J. Y. Lin, J. K. Tsai, H. Park, G. H. Kim, D. H. Youn, H. I. Cho, E. J. Lee, J. H. Lee, C.-T. Liang, and Y. F. Chen, J. Korean Phys. Soc. 48, 1539 (2006).
[27] Y. Y. Proskuryakov, A. K. Savchenko, S. S. Safonov, M. Pepper, M. Y. Simmons, and D. A. Ritchie, Phys. Rev. Lett. 86, 4895 (2001).
[28] C.-T. Liang, L. H. Lin, J. Z. Huang, Z. Y. Zhang, Z. H. Sun, K. Y. Chen, N. C. Chen, P. H. Chang, and C. A. Chang, Appl. Phys. Lett. 90, 022107 (2007).
[29] J. Y. Lin, J. H. Chen, G. H. Kim, H. Park, D. H. Youn, C. M. Jeon, J. M. Baik, J. L. Lee, C.-T. Liang, and Y. F. Chen, J. Korean Phys. Soc. 49, 1130 (2006).
[30] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, V. A. Larionova, A. K. Bakarov, and B. N. Zvonkov, Phys. Rev. B 74, 045314 (2006).
[31] A. Y. Kuntsevich, L. A. Morgun, and V. M. Pudalov, Phys. Rev. B 87, 205406 (2013).
[32] I. V. Gornyi, and A. M. Mirlin, Phys. Rev. Lett. 90, 076801 (2003).
[33] B. L. Altshuler and A. G. Aronov in Electron-Electron Interaction in Disordered Systems, (North-Holland, Amsterdam ,1985)
[34] I. V. Gornyi, and A. M. Mirlin, Phys. Rev. Lett. 90, 076801 (2003).
[35] S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[36] B. L. Altshuler, D. Khmelnitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
[37] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 38, 3232 (1988).
[38] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, and B. N. Zvonkov, Phys. Rev. B 76, 165314 (2007).
Ch6 References
[1] A. K. M. Wennberg, S. N. Ytterboe, C. M. Gould, H .M. Bozler, J. Klem, and H. Morkoc, Phys. Rev. B 34, 4409 (1986).
[2] N. J. Appleyard, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, and M. Pepper, Phys. Rev. Lett. 81, 3491 (1998).
[3] B. K. Ridley, Rep. Prog. Phys. 54, 169 (1991).
[4] D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Semicond. Sci. Technol. 4, 879 (1989).
[5] N. Balkan, H. Celik, A. J. Vickers, and M. Cankurtaran, Phys. Rev. B 52, 17210 (1995)
[6] P. Z. Chen, L.-H. Lin, C.-T. Liang, J.-Y. Lin, J.-H. Chen, M. Y. Simmons, and D. A. Ritchie, J. Korean Phys. Soc. 50, 1662 (2007).
[7] A. Mittal, R. G. Wheeler, M. W. Keller, D. E. Prober, and R. N. Sacks, Surf. Sci. 361/362, 537 (1996).
[8] J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994).
[9] C.-T. Liang, Y.-R. Li, L.-H. Lin, P.-T. Lin, C.-K. Yang, Y.S. Tseng, K.Y. Chen, N.R. Cooper, M.Y. Simmons, and D.A. Ritchie, Appl. Phys. Lett. 92, 152117 (2008).
[10] C.-S. Hsu, E. S. Kannan, J.-C. Portal, C.-T. Liang, C. F. Huang, and S.-D. Lin, Solid State Commun. 156, 45 (2013).
[11] G.-H. Kim, J. T. Nicholls, C.-T. Liang, D. A. Ritchie and S. I. Khondaker, Physica E 12, 658 (2002).
[12] G.-H. Kim, J. T. Nicholls, D. A. Ritchie, S. I. Khondaker, C.-T. Liang, and T. W. Kim, J. Korean Phys. Soc. 42, S454 (2003).
[13] G.-H. Kim, C.-T. Liang, C. F. Huang, M. H. Lee, J. T. Nicholls, D. A. Ritchie, Physica E 17, 292 (2003).
[14] G.-H. Kim, C.-T. Liang, C. F. Huang, J. T. Nicholls, D. A. Ritchie, P. S. Kim, C. H. Oh, J. R. Juang and Y. H. Chang, Phys. Rev. B 69, 073311 (2004).
[15] T.-Y. Huang, J. R. Juang, C. F. Huang, G.-H. Kim, C. P. Huang, C.-T. Liang, Y. H. Chang, Y. F. Chen, Y. Lee and D. A. Ritchie, Physica E 22, 240 (2004).
[16] G.-H. Kim, C.-T. Liang, C. F. Huang and D. A. Ritchie, AIP Conference Proceedings 772, 575 (2005).
[17] T.-Y. Huang, C.-T. Liang, G.-H. Kim, C. F. Huang, C. P. Huang, J.-Y. Lin, H. S. Goan, and D. A. Ritchie, Phys. Rev. B, 78, 113305 (2008).
[18] K. Y. Chen, Y. H. Chang and C.-T. Liang, N. Aoki, Y. Ochiai, C. F. Huang, L.-H. Lin, K. A. Cheng, H. H. Cheng, H. H. Lin, J.-Y. Wu, and S.-D. Lin, Journal of Physics: Condensed Matter 20, 295223 (2008).
[19] K. Y. Chen, C.-T. Liang, N. Aoki, Y. Ochiai, K. A. Cheng, L.-H. Lin, C. F. Huang, Y.-R. Li, Y. S. Tseng, C.-K. Yang, P.-T. Lin, J.-Y. Wu, and Sheng-Di Lin, J. Korean Phys. Soc. 55, 64 (2009).
[20] T.-Y. Huang, C. F. Huang, G.-H. Kim, C.-P. Huang, C.-T. Liang, and D. A. Ritchie, Chin J. Phys. 47, 401 (2009).
[21] T.-Y. Huang, C.-T. Liang, G.-H. Kim, C. F. Huang, C.-P. Huang, and D. A. Ritchie, Physica E 42, 1142 (2010).
[22] S.-T. Lo, K. Y. Chen, T. L. Lin, L.-H. Lin, D.-S. Lou, Y. Ochiai, N. Aoki, Y.-T. Wang, Z. F. Peng, Y. Lin, J. C. Chen, S.-D. Lin, C. F. Huang, and C.-T. Liang, Solid State Commun. 150, 1902 (2010).
[23] Y.-T. Wang, G.-H. Kim, C. F. Huang, S.-T. Lo, W.-J. Chen, J. T. Nicholls, L.-H. Lin, D. A. Ritchie, Y. H. Chang, C.-T. Liang, and B. P. Dolan, J. Phys. Condens. Matter 24, 405801 (2012).
[24] D.-S. Luo, L.-H. Lin, Y.-C. Su, Y.-T. Wang, Z. F. Peng, S.-T. Lo, K. Y. Chen, Y. H. Chang, J.-Y. Wu, Y. Lin, S.-D. Lin, J. C. Chen, C. F. Huang, and C.-T. Liang, Nanoscale Res. Lett. 6, 139 (2011).
[25] H. Scherer, L. Schweitzer, F. J. Ahlers, L. Bliek, R. Losch, and W. Schlapp, Semicond. Sci. Technol. 10, 963 (1995).
[26] S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[27] B. L. Altshuler, D. Khmelnitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
[28] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 38, 3232 (1988).
[29] K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B 36, 7751 (1987).
[30] E. Abrahams, P. W. Anderson, P. A. Lee, T.V. Ramakrishnan, Phys. Rev. B 24, 6783 (1981).
[31] K. K. Choi, Phys. Rev. B 28, 5774 (1983).
[32] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
[33] J. J. Lin and J. P. Bird, J. Phys.: Condens. Matter 14, R501 (2002).
[34] T. Brandes, L. Schweitzer, and B. Kramer, Phys. Rev. B 72, 3582 (1994).
[35] S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Semicond. Sci. Technol. 10, 209 (1995).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58211-
dc.description.abstract本篇論文在探討有關量子傳輸在極低溫的二維電子氣系統的特性和應用。主要分為四個實驗相關的章節。第一個部份,從基礎的物理性質如絕緣態,量子霍爾態,和磁阻振盪開始討論,並更進一步討論量子相變化的一些相關物理性質。其中決定此相變化的一個很重要的決定因素可能來至低場郎道能階的混成有關。第二個部份,更進一步使用相圖來探討改變塞曼效應對量子相變化的影響。第三個部份,探討有關電子屏蔽效應所導致非單調性的磁阻變化來由。第四部份,研究有關電子熱效應的影響和可能的應用。

量子霍爾效應是非常出名的量子傳輸效應的代表。其基本理論可以運用單一電子的侷限化模型來描述。但隨著在更多量子傳輸現象的產生。平均場論和類(準)載子系統在局部作用的模型幫助我們更加瞭解量子傳輸現象。像是直接量子霍爾態相變化可能就可以利用此相關理論來加以表述。而有關量子霍爾態的分離轉換點更可以透過此相關理論來証實。而電子-電子間的作用力也在量子傳輸作用中扮演一個很重要的角色。而電子熱效應能直接改變局部載子分佈的情形。這些都有助於我們對於量子傳輸的更一步認識和瞭解。對於發展量子傳輸裝置有很大的幫助。
zh_TW
dc.description.abstractThis dissertation describes low-temperature transport measurements in two-dimensional electron gas systems. There are four research parts for different experiments. The first concerns the basic properties of two-dimensional electron gas systems, such as insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields. The second is a study of the renormalization group flow diagram through varying spin-splitting to delve into new quantum transport theories. The third discusses the non-monotonic magneto-resistivity due to Friedel’s oscillations. This is an important quantum transport property due to high electron concentration and strong electron-electron interactions. The fourth describes how electron heating can be a very powerful tool to study semiconductor devices.
The quantum Hall effect is the most famous example in two-dimensional quantum transports. The concept of one-electron localization in the presence of a short-range disorder gives a good physics picture for understanding the phenomenon. All electron states in the broadened Landau level are localized except for electron with energy in the extended state. During the recent years, in the framework of a mean-field approximation, the concept of quasi-particles provides a more powerful tool for explaining more quantum transport properties. For example, the new boundary of global phase diagram due to low fields Landau level mixing may provide a way to explain direct insulator quantum Hall transition. The Separatrix of temperature driven flow lines may be caused by locally distribution of quasi-particles. The electron interaction causes non-monotonic magneto-resistivity due to Friedel’s oscillation by double back scattering of electrons. Electron heating may cause the non-uniform distribution of quasi-particles.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:08:22Z (GMT). No. of bitstreams: 1
ntu-103-D98222028-1.pdf: 4906555 bytes, checksum: 0fdb2c8d68b50cdbf75706fecea4e88b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContent
CHAPTER 1 INTRODUCTION 1
1.1 INTRODUCTION 1
1.2 THE DRUDE MODEL AND CLASSICAL HALL EFFECT 3
1.3 CURRENT FLOW 5
1.4 DEVICE AND MEASUREMENT 6
REFERENCES 9
CHAPTER 2 ELECTRON TRANSPORT IN A TWO-DIMENSIONAL ELECTRON SYSTEM 10
2.1 QUANTUM HALL EFFECT 10
2.2 THE RENORMALIZATION GROUP FLOW DIAGRAM 13
REFERENCES 18
CHAPTER 3 INSULATOR, SEMICLASSICAL OSCILLATIONS AND QUANTUM HALL LIQUIDS AT LOW MAGNETIC FIELDS 19
3.1 INTRODUCTION 19
3.2 GLOBAL PHASE DIAGRAM 23
3.3 SAMPLES 26
3.4 RESULTS AND DISCUSSIONS 27
3.5 CONCLUSIONS 37
REFERENCES 38
CHAPTER 4 TEMPERATURE-DRIVEN FLOW LINES IN A TWO-DIMENSIONAL ELECTRON GAS CONTAINING SELF-ASSEMBLED INAS DOTS SYSTEM 41
4.1 INTRODUCTION 41
4.2 THE TWO-PHASE MODEL 43
4.3 SAMPLE 45
4.4 RESULTS AND DISCUSSIONS 47
4.5 CONCLUSION 66
REFERENCES 67
CHAPTER 5 NON-MONOTONIC MAGNETORESISTANCE AND TEMPERATURE DEPENDENCE OF THE RESISTANCE IN TWO-DIMENSIONAL ELECTRON GAS SYSTEMS 69
5.1 INTRODUCTION 69
5.2 DOUBLE BACK SCATTERING MODEL 72
5.3 SAMPLE 74
5.4 RESULTS AND DISCUSSIONS 76
5.5 CONCLUSIONS 85
REFERENCES 87
CHAPTER 6 89
ELECTRON HEATING AND CURRENT SCALING IN A TWO-DIMENSIONAL SYSTEM IN CLOSE PROXIMITY TO NANOSCALE SCATTERERS 89
6.1 INTRODUCTION 90
6.2 WEAK LOCALIZATION AND ELECTRON HEATING 91
6.3 SAMPLE 93
6.4 RESULTS AND DISCUSSIONS 94
6.5 CONCLUSIONS 99
REFERENCES 101
CHAPTER 7 CONCLUSIONS 103
dc.language.isoen
dc.subject量子霍爾效應zh_TW
dc.subject相變化zh_TW
dc.subject量子傳輸zh_TW
dc.subjectQuantum Transporten
dc.subjectQuantum Hall Effecten
dc.subjectPhase transitionen
dc.title二維電子系統之量子傳輸和相圖特徵研究zh_TW
dc.titleQuantum transport and phase diagram in two-dimensional electron systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee林聖迪(Sheng-Di Lin),陳俊維(Chun-Wei Chen),林立弘(Li-hung Lin),陳則銘(Tse-Ming Chen)
dc.subject.keyword量子傳輸,量子霍爾效應,相變化,zh_TW
dc.subject.keywordQuantum Transport,Quantum Hall Effect,Phase transition,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2014-05-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved