請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58189
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李宗璘(Tsung-Lin Li) | |
dc.contributor.author | Kuei-Chen Wang | en |
dc.contributor.author | 王貴貞 | zh_TW |
dc.date.accessioned | 2021-06-16T08:07:50Z | - |
dc.date.available | 2019-07-22 | |
dc.date.copyright | 2014-07-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-06-06 | |
dc.identifier.citation | Reference
1. Knight, D.J. & Girling, K.J. Gut flora in health and disease. Lancet 361, 1831 (2003). 2. Gibson, G.R. & Wang, X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77, 412-20 (1994). 3. Picard, C. et al. Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits. Aliment Pharmacol Ther 22, 495-512 (2005). 4. Wei, M.Q. et al. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J Cancer 43, 490-6 (2007). 5. de Vrese, M. & Schrezenmeir, J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111, 1-66 (2008). 6. Rotimi, V.O. & Duerden, B.I. The development of the bacterial flora in normal neonates. J Med Microbiol 14, 51-62 (1981). 7. Favier, C.F., de Vos, W.M. & Akkermans, A.D. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9, 219-29 (2003). 8. Kleessen, B., Bunke, H., Tovar, K., Noack, J. & Sawatzki, G. Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants. Acta Paediatr 84, 1347-56 (1995). 9. Bode, L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 67 Suppl 2, S183-91 (2009). 10. Gnoth, M.J., Kunz, C., Kinne-Saffran, E. & Rudloff, S. Human milk oligosaccharides are minimally digested in vitro. J Nutr 130, 3014-20 (2000). 11. Kobata, A. Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 86, 731-47 (2010). 12. Varki, A., Cummings, R.D., Esko, J.D. & Freeze, H.H. Essentials of Glycobiology, 2nd edition, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2009). 13. Wada, J. et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74, 3996-4004 (2008). 14. Kiyohara, M. et al. Prebiotic effect of lacto-N-biose I on bifidobacterial growth. Biosci Biotechnol Biochem 73, 1175-9 (2009). 15. Fujita, K. et al. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem 280, 37415-22 (2005). 16. Nishimoto, M. & Kitaoka, M. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 73, 6444-9 (2007). 17. Kitaoka, M., Tian, J. & Nishimoto, M. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 71, 3158-62 (2005). 18. Suzuki, R. et al. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 283, 13165-73 (2008). 19. Derensy-Dron, D., Krzewinski, F., Brassart, C. & Bouquelet, S. Beta-1,3-galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol Appl Biochem 29 ( Pt 1), 3-10 (1999). 20. Nakajima, M., Nihira, T., Nishimoto, M. & Kitaoka, M. Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124. Appl Microbiol Biotechnol 78, 465-71 (2008). 21. Nakajima, M. & Kitaoka, M. Identification of lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6. Appl Environ Microbiol 74, 6333-7 (2008). 22. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37, D233-8 (2009). 23. Nishimoto, M. & Kitaoka, M. One-pot enzymatic production of beta-D-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-D-galactose (galacto-N-biose) from sucrose and 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine). Carbohydr Res 344, 2573-6 (2009). 24. Nishimoto, M. & Kitaoka, M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem 71, 2101-4 (2007). 25. Cai, L. et al. Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives. Bioorg Med Chem Lett 19, 5433-5 (2009). 26. Cai, L. et al. A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem Commun (Camb), 2944-6 (2009). 27. Zhao, G., Guan, W., Cai, L. & Wang, P.G. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat Protoc 5, 636-46 (2010). 28. Li, Y. et al. Substrate promiscuity of N-acetylhexosamine 1-kinases. Molecules 16, 6396-407 (2011). 29. Chen, Y. et al. One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun (Camb) 47, 10815-7 (2011). 30. Holden, H.M., Rayment, I. & Thoden, J.B. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278, 43885-8 (2003). 31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326 (1997). 32. Ness, S.R., de Graaff, R.A., Abrahams, J.P. & Pannu, N.S. CRANK: new methods for automated macromolecular crystal structure solution. Structure 12, 1753-61 (2004). 33. de Graaff, R.A., Hilge, M., van der Plas, J.L. & Abrahams, J.P. Matrix methods for solving protein substructures of chlorine and sulfur from anomalous data. Acta Crystallogr D Biol Crystallogr 57, 1857-62 (2001). 34. Pannu, N.S. & Read, R.J. The application of multivariate statistical techniques improves single-wavelength anomalous diffraction phasing. Acta Crystallogr D Biol Crystallogr 60, 22-7 (2004). 35. Abrahams, J.P. & Leslie, A.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52, 30-42 (1996). 36. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62, 1002-11 (2006). 37. Cowtan, K. Fitting molecular fragments into electron density. Acta Crystallogr D Biol Crystallogr 64, 83-9 (2008). 38. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 (2010). 39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-32 (2004). 40. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-67 (2011). 41. Huang, Y.T. et al. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-beta-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. Chembiochem 10, 2480-7 (2009). 42. Sela, D.A. et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105, 18964-9 (2008). 43. Brenner, S. Phosphotransferase sequence homology. Nature 329, 21 (1987). 44. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem Sci 20, 478-80 (1995). 45. Malito, E., Sekulic, N., Too, W.C., Konrad, M. & Lavie, A. Elucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine. J Mol Biol 364, 136-51 (2006). 46. Smith, C.A., Toth, M., Frase, H., Byrnes, L.J. & Vakulenko, S.B. Aminoglycoside 2'-phosphotransferase IIIa (APH(2')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2' kinases. J Biol Chem 287, 12893-903 (2012). 47. Scheeff, E.D. & Bourne, P.E. Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 1, e49 (2005). 48. Burk, D.L., Hon, W.C., Leung, A.K. & Berghuis, A.M. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40, 8756-64 (2001). 49. Fong, D.H., Lemke, C.T., Hwang, J., Xiong, B. & Berghuis, A.M. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila. J Biol Chem 285, 9545-55 (2010). 50. Thompson, P.R., Hughes, D.W., Cianciotto, N.P. & Wright, G.D. Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues. J Biol Chem 273, 14788-95 (1998). 51. Guan, W., Cai, L., Fang, J., Wu, B. & George Wang, P. Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chem Commun (Camb), 6976-8 (2009). 52. Mengin-Lecreulx, D. & van Heijenoort, J. Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175, 6150-7 (1993). 53. Vagin, A. & Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 30, 1022-1025 (1997). 54. Nishimoto, M. & Kitaoka, M. Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211). Biosci Biotechnol Biochem 71, 1587-91 (2007). 55. Hidaka, M. et al. The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: a large deformation of a TIM barrel scaffold. J Biol Chem 284, 7273-83 (2009). 56. Hidaka, M. et al. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold. Structure 12, 937-47 (2004). 57. Hidaka, M. et al. Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol 322, 79-91 (2002). 58. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804-10 (2007). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58189 | - |
dc.description.abstract | 比菲德氏菌(Bifidobacteria)為革蘭氏陽性厭氧菌,其具有獨特的lacto-N-biose I (LNB)/galacto-N-biose (GNB) 代謝路徑。比菲德氏菌利用此獨特的路徑代謝LNB及GNB,以利其共生在人類消化道中。LNB/GNB代謝路徑是由lnpABCD基因組經轉錄(transcription)、轉譯(translation)後生成。lnpA基因生成Galacto-N-biose/lacto-N-biose I磷酸化酶(galacto-N-biose/lacto-N-biose I phosphorylase, GLNBP)。 在不消耗ATP情況下,GLNBP可將LNB及GNB轉化為半乳糖-1-磷酸(galactose-1-phosphate) 及 氮-乙醯六碳糖胺 (N-acetyl-D-hexosamine)。氮-乙醯六碳糖胺包含氮-乙醯葡萄糖胺(N-acetylglucosamine, GlcNAc)及氮-乙醯半乳糖胺(N-acetylgalactosamine, GalNAc)。GLNBP有助於比菲德氏菌在厭氧環境中更有效運用ATP。接著,由lnpB基因生成的氮-乙醯六碳糖激酶 (N-acetylhexosamine 1-kinase, NahK)將氮-乙醯葡萄糖胺及氮-乙醯半乳糖胺磷酸化為氮-乙醯葡萄糖胺-1-磷酸(N-acetylglucosamine -1-phosphate, GlcNAc-1P)及氮-乙醯半乳糖胺-1-磷酸 (N-acetylgalactosamine-1-phosphate, GalNAc-1P)。NahK已被廣泛使用於酵素合成中。 雖然GLNBP及NahK已被研究多年,GLNBP及Nahk的分子催化機轉依然不清楚。因此,我們想利用X光蛋白結晶學及生物化學的方法解析出GLNBP及NahK的蛋白質結構,並進一步探討其催化作用機制。在此篇研究中,我們解析出GLNBP與LNB/GNB複合體蛋白質結構。藉由分析複合體蛋白結構,我們推測藉由無機磷酸根(inorganic phosphate)的直接攻擊,GLNBP可能是進行反轉的磷酸解反應(an inverting phosphorolytic reaction)。在NahK部分,我們解析了七個NahK與其受質(substrates)及產物(products)複合的蛋白結構。藉由這些複合體蛋白結構,我們推測NahK是進行類似SN2的磷酸化反應。NahK 是第一個具有多階段反應之複合體蛋白結構之激酶。GLNBP及NahK的蛋白複合體結構解析及催化機制的探討,將有助於GLNBP及NahK應用於寡糖的酵素合成並進一步增加寡糖的多樣性。 | zh_TW |
dc.description.abstract | Bifidobacteria, gram-positive anaerobic bacteria, feature a unique lacto-N-biose I (LNB)/galacto-N-biose (GNB) pathway to utilize LNB and GNB for colonization in the gastrointestinal tract of humans. The LNB/GNB pathway is encoded in a four-gene lnpABCD operon. Galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP) encoded by the gene lnpA catalyzes phosphorolysis of LNB and GNB into galactose-1-phosphate (Gal-1P) and N-acetyl-D-hexoamine (GlcNAc/GalNAc) without ATP consumption. This maximizes the effectiveness of ATP production under anaerobic conditions. A novel N-acetylhexosamine 1-kinase (NahK) encoded by the gene lnpB then phosphorylates N-acetyl-D-hexoamine to N-acetylhexoamine 1-phosphate (GlcNAc-1P/GalNAc-1P). NahK has been extensively used in chemoenzymatic synthesis of carbohydrates. However, the molecular mechanisms for both GLNBP and NahK remain unclear. In this study, we wanted to determine the crystal structures of GLNBP and NahK in complex with substrates/products to gain insight into the catalytic mechanisms of these two enzymes. For GLNBP, crystal structures of GLNBP in complex with LNB/GNB were solved. Based on the structural information, GLNBP was proposed to proceed through an inverting phosphorolytic reaction by the direct nucleophilic attack of an inorganic phosphate at the anomeric carbon. For NahK, seven 3-D structures of NahK in complex with GlcNAc, GalNAc, GlcNAc-1P, GlcNAc/AMPPNP and GlcNAc-1P/ADP were solved. Based on these snapshot structures, a direct in-line phosphoryl transfer mechanism was proposed. The NahK structures presented here represent the first multiple-reaction complexes of the enzyme. The demonstration of the protein crystal structures and the elucidation of the catalytic mechanisms would provide useful information for expanding the utilizations of both GLNBP and NahK to a great extent. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:07:50Z (GMT). No. of bitstreams: 1 ntu-103-D97b46016-1.pdf: 4952115 bytes, checksum: 9c8ce8db152dc5ee2a1d2c67ef73e606 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Chapter 1. Introduction 1-5 1.1. Human milk oligosaccharides (HMO) and lacto-N-biose I (LNB) 1 1.2. Galacto-N-biose (GNB) 2 1.3. The LNB/GNB pathway 2 1.4. Galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP) 3 1.5. N-acetylhexosamine 1-kinase (NahK) 3 1.6. UDP-glucose hexose 1-phosphate uridylyl transferase (GalTBL) and UDP-glucose 4-epimerase (GalEBL) 4 1.7. Study aims 5 Chapter 2. N-acetylhexosamine 1-kinase (NahK) 6-20 2.1. Materials and Methods 6 2.1.1. Protein expression and purification 6 2.1.2. Crystallization and data collection 7 2.1.3. Structure determination and refinement 8 2.1.4. Site-directed mutagenesis 8 2.1.5. Enzymatic activity assay 10 2.1.6. Isothermal titration calorimetry (ITC) analysis 11 2.1.7. Analytical ultracentrifugation analysis 11 2.2. Results and Discussion 12 2.2.1. Structure determination 12 2.2.2. Overall structure 13 2.2.3. Structural comparison 13 2.2.4. Sugar binding site 14 2.2.5. Nucleotide binding site 15 2.2.6. Substrate specificity 16 2.2.7. Catalytic mechanism 17 2.2.8. Reaction order 18 2.3. Concluding remarks 20 Chapter 3. Galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP) 21-28 3.1. Materials and Methods 21 3.1.1. Gene cloning and protein purification 21 3.1.2. Crystallization and data collection 22 3.1.3. Structure determination and refinement 22 3.1.4. Enzymatic activity assay 23 3.2. Results and Discussion 24 3.2.1. Overall structure 24 3.2.2. Sugar-binding site 24 3.2.3. Substrate specificity 25 3.2.4. Reaction mechanism 26 3.2.5. Structural comparison 27 3.3. Summary 28 Figures 29-52 Figure 1. The LNB/GNB pathway in Bifidobacteria 30 Figure 2. Analytical ultracentrifugation (AUC) and gel filtration chromatography analysis for NahK 31 Figure 3. Sequence and structure alignments for NahK_JCM1217 and NahK_ATCC15697 32 Figure 4. Stereoview of the ternary NahK●GlcNAc●AMPPNP complex 33 Figure 5. The topology of NahK 33 Figure 6. Sequence alignment for NahK and choline kinases 34 Figure 7. Structural comparison of NahK, hCK and APH(2”)-IIIa 35 Figure 8. Sugar-binding site of NahK 36 Figure 9. Nucleotide binding site of NahK 37 Figure 10. LC traces. 38 Figure 11. Molecule docking of ManNAc into the sugar-binding site of NahK 39 Figure 12. Catalytic mechanism of NahK 40 Figure 13. ITC analyses of NahK 41 Figure 14. ITC analyses of NahK mutants 43 Figure 15. Gel filtration chromatography and SDS-PAGE analyses for GLNBP 45 Figure 16. Interfaces analysis of GLNBP 46 Figure 17. Overall structure of GLNBP 48 Figure 18. Sugar-binding site of GLNBP 49 Figure 19. HPAEC-PAD traces of GLNBP reactions 50 Figure 20. Sequence alignment for GLNBP and its homologues in GH112 51 Figure 21. Catalytic mechanism of GLNBP and structural comparasion 52 Tables 53-59 Table 1. Data collection, phasing and refinement statistics for NahK 54 Table 2. Relative enzymatic activities of NahK and mutants towards GlcNAc/GalNAc 55 Table 3. Summary of ITC analysis for NahK 56 Table 4. Summary of ITC analysis for NahK mutants 57 Table 5. Substrate specificity of NahK 58 Table 6. Data collection, phasing and refinement statistics for GLNBP 59 Reference 60 Appendix 69 | |
dc.language.iso | en | |
dc.title | 探討比菲德氏龍根菌LNB/GNB代謝基因組中磷酸解酶及激酶之蛋白複合結構與催化機制 | zh_TW |
dc.title | Structure-based catalytic mechanisms of galacto-N-biose/lacto-N-biose I phosphorylase and N-acetylhexosamine 1-kinase in the LNB/GNB pathway of Bifidobacterium longum | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林俊宏(Chun-Hung Lin) | |
dc.contributor.oralexamcommittee | 吳東昆(Tung-Kung Wu),蔡明道(Ming-Daw Tsai),梁博煌(Po-Huang Liang),詹迺立(Nei-Li Chan) | |
dc.subject.keyword | LNB,GNB,磷酸解?,激?, | zh_TW |
dc.subject.keyword | LNB,GNB,GLNBP,NahK, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-06-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。