Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤(Tsiu-Kwen Lee)
dc.contributor.authorJheng-Huei Linen
dc.contributor.author林政輝zh_TW
dc.date.accessioned2021-06-16T08:07:45Z-
dc.date.available2014-07-22
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-06-08
dc.identifier.citation[1] A.A. Albert, “Structure of algebras”, American Mathematical Society, New York 1939.
[2] P. Beelen and R. Gramlich, On anti-automorphisms of the first kind in division rings, Proc. Amer. Math. Soc. 130(12) (2002), 3745–3746.
[3] K.I. Beidar, W.S. Martindale III, and A.A. Mikhalev. “Rings with generalized identities.” Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[4] K.I. Beidar, M. Breˇ sar, and M.A. Chebotar. Generalized functional identities with (anti-) automorphisms and derivations on prime rings, I, J. Algebra 215(2) (1999), 644–665.
[5] M. Breˇ sar, A unified approach to the structure theory of PI-rings and GPI-rings, Serdica Math. J. 38 (2012), 199–210.
[6] M. Breˇ sar, and J. Vukman. On some additive mappings in rings with involution, Aequationes Math. 38(2-3) (1989), 178–185.
[7] M.A. Chebotar, Functional identities in prime rings, Russian Math. Surveys 53(1) (1998), 210-211
[8] C.-L. Chuang, A. Foˇ sner, and T.-K. Lee, Jordan τ-derivations of locally matrix rings, Algebr. Represent. Theory 16(3) (2013), 755–763.
[9] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723–728.
[10] J.M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53(2) (1975), 321–324.
[11] A. Foˇ sner and T.-K. Lee, Jordan ∗-derivations of finite-dimensional semiprime algebras, Canad. Math. Bull. 57(1) (2014), 51–60.
[12] I.N. Herstein, “Noncommutative rings”, Carus mathematical monographs, 15. Math. Assoc. of America, 1968.
[13] I.N. Herstein, “Topics in ring theory”, University of Chicago Press, 1969.
[14] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(6) (1957), 1104–1110.
[15] N. Jacobson. “PI-algebras: An introduction.” Lecture Notes in Mathematics, 441. Springer-Verlag, Berlin-New York, 1975.
[16] T.Y. Lam, “Lectures on modules and rings”, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
[17] T.-K. Lee, Generalized skew derivations characterized by acting on zero products, Pacific J. Math. 216(2) (2004), 293–301.
[18] T.-K. Lee, and Y. Zhou, Jordan ∗-derivations of prime rings, J. Algebra Appl. 13(4) (2014), 9 pages.
[19] T.-K. Lee, T.-L. Wong, and Y. Zhou, The structure of Jordan ∗-derivations of prime rings, Linear Multilinear Algebra. Published online on February 14, 2014
(http://dx.doi.org/10.1080/03081087.2013.869593).
[20] W.S. Martindale, 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
[21] P. ˇ Semrl, Quadratic functionals and Jordan ∗-derivations, Studia Math. 97(3) (1991), 157–165.
[22] P. ˇ Semrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119(4) (1993), 1105–1113.
[23] P. ˇ Semrl, Jordan ∗-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120(2) (1994), 515–518.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58185-
dc.description.abstract我們將研究質環上喬登τ-導算的結構。明確地說,令R是一個非交換的質環,Qms(R)是其雙邊極大商環,且τ為R上頭的一個反自同構。令δ:R→Qms(R) 為一個喬登τ-導算。我們證明存在一個a ∈ Qms(R) 使得對於所有 x ∈ R 都有δ(x)=ax^τ-xa 如果以下任一條件成立:
(一) R不是GPI環;
(二) R是一個可除環除了char R ≠=2 且 dim_{C} R=4;
(三) R是中心封閉的GPI環且特徵不為二;
(四) R是PI環且特徵不等於二。
zh_TW
dc.description.abstractIn the thesis we study the structure of Jordan τ-derivations of prime rings. Precisely, let R be a noncommutative prime ring with Qms(R) the maximal symmetric ring of quotients of R and let τ be an anti-automorphism of R. Let δ:R→Qms(R) be a Jordan τ-derivation. We show that there exists a ∈ Qms(R) such that δ(x) = ax^τ-xa for all x ∈ R if one of the following conditions holds:
(1) R is not a GPI-ring.
(2) R is a division ring except when charR =/= 2 and dim_{C} R = 4.
(3) R is a centrally closed GPI-ring with charR =/= 2.
(4) R is a PI-ring with charR =/= 2.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:07:45Z (GMT). No. of bitstreams: 1
ntu-103-R01221012-1.pdf: 873894 bytes, checksum: cd10a90a7747304420694d9cd1cea585 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 ....................i
誌謝 ....................ii
中文摘要 ....................iii
英文摘要 ....................iv
目錄 ....................v
§0. Introduction ....................1
§1. Preliminaries ....................2
§2. Main Theorems ....................5
References ....................14
dc.language.isoen
dc.subject泛函恆等式zh_TW
dc.subject雙邊極大商環zh_TW
dc.subject喬登τ-導算zh_TW
dc.subject質環zh_TW
dc.subjectPIzh_TW
dc.subject反自同構zh_TW
dc.subjectGPIzh_TW
dc.subjectMaximal symmetric ring of quotientsen
dc.subjectJordan  τ-derivationen
dc.subjectAnti-automorphismen
dc.subjectFunctional identityen
dc.subjectGPIen
dc.subjectPIen
dc.subjectPrime ringen
dc.title質環上的喬登τ-導算zh_TW
dc.titleJordan τ-derivations of Prime ringsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛(Pjek-Hwee Lee),蔡援宗(Yuan-Tsung Tsai)
dc.subject.keyword質環,喬登τ-導算,反自同構,泛函恆等式,GPI,PI,雙邊極大商環,zh_TW
dc.subject.keywordPrime ring,Jordan  τ-derivation,Anti-automorphism,Functional identity,GPI,PI,Maximal symmetric ring of quotients,en
dc.relation.page15
dc.rights.note有償授權
dc.date.accepted2014-06-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
853.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved