請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58185完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李秋坤(Tsiu-Kwen Lee) | |
| dc.contributor.author | Jheng-Huei Lin | en |
| dc.contributor.author | 林政輝 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:07:45Z | - |
| dc.date.available | 2014-07-22 | |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-08 | |
| dc.identifier.citation | [1] A.A. Albert, “Structure of algebras”, American Mathematical Society, New York 1939.
[2] P. Beelen and R. Gramlich, On anti-automorphisms of the first kind in division rings, Proc. Amer. Math. Soc. 130(12) (2002), 3745–3746. [3] K.I. Beidar, W.S. Martindale III, and A.A. Mikhalev. “Rings with generalized identities.” Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996. [4] K.I. Beidar, M. Breˇ sar, and M.A. Chebotar. Generalized functional identities with (anti-) automorphisms and derivations on prime rings, I, J. Algebra 215(2) (1999), 644–665. [5] M. Breˇ sar, A unified approach to the structure theory of PI-rings and GPI-rings, Serdica Math. J. 38 (2012), 199–210. [6] M. Breˇ sar, and J. Vukman. On some additive mappings in rings with involution, Aequationes Math. 38(2-3) (1989), 178–185. [7] M.A. Chebotar, Functional identities in prime rings, Russian Math. Surveys 53(1) (1998), 210-211 [8] C.-L. Chuang, A. Foˇ sner, and T.-K. Lee, Jordan τ-derivations of locally matrix rings, Algebr. Represent. Theory 16(3) (2013), 755–763. [9] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988), 723–728. [10] J.M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53(2) (1975), 321–324. [11] A. Foˇ sner and T.-K. Lee, Jordan ∗-derivations of finite-dimensional semiprime algebras, Canad. Math. Bull. 57(1) (2014), 51–60. [12] I.N. Herstein, “Noncommutative rings”, Carus mathematical monographs, 15. Math. Assoc. of America, 1968. [13] I.N. Herstein, “Topics in ring theory”, University of Chicago Press, 1969. [14] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(6) (1957), 1104–1110. [15] N. Jacobson. “PI-algebras: An introduction.” Lecture Notes in Mathematics, 441. Springer-Verlag, Berlin-New York, 1975. [16] T.Y. Lam, “Lectures on modules and rings”, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999. [17] T.-K. Lee, Generalized skew derivations characterized by acting on zero products, Pacific J. Math. 216(2) (2004), 293–301. [18] T.-K. Lee, and Y. Zhou, Jordan ∗-derivations of prime rings, J. Algebra Appl. 13(4) (2014), 9 pages. [19] T.-K. Lee, T.-L. Wong, and Y. Zhou, The structure of Jordan ∗-derivations of prime rings, Linear Multilinear Algebra. Published online on February 14, 2014 (http://dx.doi.org/10.1080/03081087.2013.869593). [20] W.S. Martindale, 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. [21] P. ˇ Semrl, Quadratic functionals and Jordan ∗-derivations, Studia Math. 97(3) (1991), 157–165. [22] P. ˇ Semrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119(4) (1993), 1105–1113. [23] P. ˇ Semrl, Jordan ∗-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120(2) (1994), 515–518. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58185 | - |
| dc.description.abstract | 我們將研究質環上喬登τ-導算的結構。明確地說,令R是一個非交換的質環,Qms(R)是其雙邊極大商環,且τ為R上頭的一個反自同構。令δ:R→Qms(R) 為一個喬登τ-導算。我們證明存在一個a ∈ Qms(R) 使得對於所有 x ∈ R 都有δ(x)=ax^τ-xa 如果以下任一條件成立:
(一) R不是GPI環; (二) R是一個可除環除了char R ≠=2 且 dim_{C} R=4; (三) R是中心封閉的GPI環且特徵不為二; (四) R是PI環且特徵不等於二。 | zh_TW |
| dc.description.abstract | In the thesis we study the structure of Jordan τ-derivations of prime rings. Precisely, let R be a noncommutative prime ring with Qms(R) the maximal symmetric ring of quotients of R and let τ be an anti-automorphism of R. Let δ:R→Qms(R) be a Jordan τ-derivation. We show that there exists a ∈ Qms(R) such that δ(x) = ax^τ-xa for all x ∈ R if one of the following conditions holds:
(1) R is not a GPI-ring. (2) R is a division ring except when charR =/= 2 and dim_{C} R = 4. (3) R is a centrally closed GPI-ring with charR =/= 2. (4) R is a PI-ring with charR =/= 2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:07:45Z (GMT). No. of bitstreams: 1 ntu-103-R01221012-1.pdf: 873894 bytes, checksum: cd10a90a7747304420694d9cd1cea585 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 ....................i
誌謝 ....................ii 中文摘要 ....................iii 英文摘要 ....................iv 目錄 ....................v §0. Introduction ....................1 §1. Preliminaries ....................2 §2. Main Theorems ....................5 References ....................14 | |
| dc.language.iso | en | |
| dc.subject | 泛函恆等式 | zh_TW |
| dc.subject | 雙邊極大商環 | zh_TW |
| dc.subject | 喬登τ-導算 | zh_TW |
| dc.subject | 質環 | zh_TW |
| dc.subject | PI | zh_TW |
| dc.subject | 反自同構 | zh_TW |
| dc.subject | GPI | zh_TW |
| dc.subject | Maximal symmetric ring of quotients | en |
| dc.subject | Jordan  τ-derivation | en |
| dc.subject | Anti-automorphism | en |
| dc.subject | Functional identity | en |
| dc.subject | GPI | en |
| dc.subject | PI | en |
| dc.subject | Prime ring | en |
| dc.title | 質環上的喬登τ-導算 | zh_TW |
| dc.title | Jordan τ-derivations of Prime rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李白飛(Pjek-Hwee Lee),蔡援宗(Yuan-Tsung Tsai) | |
| dc.subject.keyword | 質環,喬登τ-導算,反自同構,泛函恆等式,GPI,PI,雙邊極大商環, | zh_TW |
| dc.subject.keyword | Prime ring,Jordan  τ-derivation,Anti-automorphism,Functional identity,GPI,PI,Maximal symmetric ring of quotients, | en |
| dc.relation.page | 15 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 853.41 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
