Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農(Ai-Nung Wang)
dc.contributor.authorPo-Chen Shihen
dc.contributor.author施柏丞zh_TW
dc.date.accessioned2021-06-16T08:07:19Z-
dc.date.available2014-07-08
dc.date.copyright2014-07-08
dc.date.issued2014
dc.date.submitted2014-06-11
dc.identifier.citation[1] R.J. GARDNER, The Brunn-Minkowski inequality. Bulletin of the American
Mathematical Society (2001) vol 39, n 3, 355-405
[2] M. Bonnefont, A discrete version of the Brunn-Minkowski inequality and its
stability, Ann. Math. Blaise Pascal, 16 (2009), 245-257.
[3] K.T.STURM, On the geometry of metric measure space I. Acta Math.,
vol.196 (2006), 65-131.
[4] K.T.STURM, On the geometry of metric measure space II. Acta Math.,
vol.196 (2006), 133-177.
[5] A.I. Bonciocat and K.T. Sturm, Mass transportation and rough curvature
bounds for discrete space. Journal of Analysis 256 (2009), 2944-2966.
[6] D.Burago, Y.Burago and S.Ivanov, A course in metric geometry. Graduate
Studies in Mathematics 33. American Mathematical Society, Providence,
RI.(2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58166-
dc.description.abstract在本論文中,我們會先定義一個Brunn-Minkowski不等式。然後我們在第一部
分中首先證明它會收斂。在第二部分中,我們會證明一個離散型式的metric space
也會滿足Brunn-Minkowski不等式。
zh_TW
dc.description.abstractIn the rst part of the paper, we give a new de nition of Brunn-
Minkowski inequality in metric measure space. Then we show the stability
of Brunn-Minkowski inequality under a convergence of metric measure
space. This result gives as a corollary the stability of the classical Brunn-
Minkowski inequality for geodesic spaces.
In the second part, we show that every metric measure space satisfying
Brunn-Minkowski inequality can be approximated by discrete space with
some approximated Brunn-Minkowski inequalities.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:07:19Z (GMT). No. of bitstreams: 1
ntu-103-R99221029-1.pdf: 467941 bytes, checksum: 6873c5b7767011e144955d4dc49a04ad (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………… i
中文摘要………………………………………………………………………… ii
1. Introduction………………………………………………………………….. 1
2. Stability of Brunn-Minkowski inequality………..............………………….. 2
3. Discretization of metric space.............................................................. 6
參考文獻…………………………………………………………………….…… 8
dc.language.isoen
dc.subjectBrunn-Minkowski 不等式zh_TW
dc.subjectBrunn-Minkowski inequalityen
dc.title離散型的Brunn Minkowski不等式綜覽zh_TW
dc.titleA survey of discrete version of Brunn Minkowski inequalityen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛克民(Keh-Ming Shyue),張樹城(Shu-Cheng Chang)
dc.subject.keywordBrunn-Minkowski 不等式,zh_TW
dc.subject.keywordBrunn-Minkowski inequality,en
dc.relation.page8
dc.rights.note有償授權
dc.date.accepted2014-06-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
456.97 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved