Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58161
標題: 矩陣束之幾何結構
On Geometric Structure of Matrix Pencils
作者: Guan-Yu Chen
陳冠羽
指導教授: 容志輝(Chee-Fai Yung)
關鍵字: 非正規矩陣束,Wong氏序列,Kronecker典型形式,奇異描述子系統,差分代數方程組 (DAEs),商空間幾何方法,
non-regular matrix pencil,Wong's sequences,Kronecker canonical form,singular descriptor systems,difference algebraic equations (DAEs),geometric approach using quotient space,
出版年 : 2020
學位: 碩士
摘要: 本論文研究非正規矩陣束$(E,A)$的幾何結構以及相應的自治離散時間描述子系統$Ex_{i+1}=Ax_i$。我們展示了Wong氏序列 [Wong, 1974] 的維度結構與Kronecker典型形式之間的聯繫。我們證明了狀態空間可以分解為奇異子空間、非平凡譜子空間和multishift子空間的直和。我們進一步根據相應的商空間結構找到各個子空間的Kronecker基底。此外,我們證明了各個子空間的Kronecker基底恰由奇異鏈、Jordan鏈和multishift鏈構成。這為非正規矩陣束的Kronecker典型形式提供了一種新的幾何證明方法,並且提供更多的幾何直觀。最後,離散時間描述子系統$Ex_{i+1}=Ax_i$的解行為將被完整刻劃。我們也給出數值範例用於說明。
Geometric structure of non-regular matrix pencils $(E,A)$ and the corresponding autonomous discrete-time descriptor systems $Ex_{i+1}=Ax_i$ are studied. We show the connection between the dimension structure of Wong's sequences [Wong, 1974] and the Kronecker canonical form. We also show that the state space can be decomposed as the sum of singularity subspace, nontrivial spectral subspace and the multishift subspace. We further find the Kronecker basis for each subspace in terms of pertinent quotient spaces. Moreover, we prove that the Kronecker basis for each subspace consists of singular chains, Jordan chains and the multishift chains. This provides a new geometric approach to the Kronecker canonical form of a non-regular matrix pencil, and gives more geometric insight. Finally, the solution behavior of the discrete-time descriptor systems $Ex_{i+1}=Ax_i$ is given. Some numerical examples are given for illustration.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58161
DOI: 10.6342/NTU202001519
全文授權: 有償授權
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1407202021090800.pdf
  未授權公開取用
1.22 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved