請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58159完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林劭品(Shau-Ping Lin),蕭百忍(Pauline Yen) | |
| dc.contributor.author | Hung-Fu Liao | en |
| dc.contributor.author | 廖虹富 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:07:09Z | - |
| dc.date.available | 2019-07-16 | |
| dc.date.copyright | 2014-07-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-12 | |
| dc.identifier.citation | Reference
Aapola, U., Liiv, I. and Peterson, P. (2002). Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res. 30, 3602-3608. Aguila, J. R., Liao, W., Yang, J., Avila, C., Hagag, N., Senzel, L. and Ma, Y. (2011). SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood 118, 576-585. Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11, R106. Arand, J., Spieler, D., Karius, T., Branco, M. R., Meilinger, D., Meissner, A., Jenuwein, T., Xu, G., Leonhardt, H., Wolf, V. et al. (2012). In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750. Aravin, A. A., van der Heijden, G. W., Castaneda, J., Vagin, V. V., Hannon, G. J. and Bortvin, A. (2009). Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5, e1000764. Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T. and Hannon, G. J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799. Arnaud, P., Hata, K., Kaneda, M., Li, E., Sasaki, H., Feil, R. and Kelsey, G. (2006). Stochastic imprinting in the progeny of Dnmt3L-/- females. Hum Mol Genet. 15, 589-598. Beisel, C. and Paro, R. (2011). Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet. 12, 123-135. Boivin, J., Bunting, L., Collins, J. A. and Nygren, K. G. (2007). International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 22, 1506-1512. Bourc'his, D. and Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. and Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536-2539. Bruscoli, S., Velardi, E., Di Sante, M., Bereshchenko, O., Venanzi, A., Coppo, M., Berno, V., Mameli, M. G., Colella, R., Cavaliere, A. et al. (2012). Long glucocorticoid-induced leucine zipper (L-GILZ) protein interacts with ras protein pathway and contributes to spermatogenesis control. J Biol Chem. 287, 1242-1251. Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de Rooij, D. G. and Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 36, 647-652. Cedar, H. and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 10, 295-304. Chan, Y., Fish, J. E., D'Abreo, C., Lin, S., Robb, G. B., Teichert, A. M., Karantzoulis-Fegaras, F., Keightley, A., Steer, B. M. and Marsden, P. A. (2004). The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 279, 35087-35100. Chedin, F., Lieber, M. R. and Hsieh, C. L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proceedings of the National Academy of Sciences of the United States of America 99, 16916-16921. Cheung, T. H. and Rando, T. A. (2013). Molecular regulation of stem cell quiescence. Nature reviews. Mol Cell Biol. 14, 329-340. Costa, Y., Speed, R. M., Gautier, P., Semple, C. A., Maratou, K., Turner, J. M. and Cooke, H. J. (2006). Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet. 15, 2324-2334. Costoya, J. A., Hobbs, R. M. and Pandolfi, P. P. (2008). Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation. Oncogene 27, 3789-3796. Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J. and Pandolfi, P. P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 36, 653-659. de Mateo, S. and Sassone-Corsi, P. (2014). Regulation of spermatogenesis by small non-coding RNAs: Role of the germ granule. Semin Cell Dev Biol. 29C, 84-92. de Rooij, D. G. (2001). Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347-354. Deplus, R., Brenner, C., Burgers, W. A., Putmans, P., Kouzarides, T., de Launoit, Y. and Fuks, F. (2002). Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 30, 3831-3838. Dettin, L., Ravindranath, N., Hofmann, M. C. and Dym, M. (2003). Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod. 69, 1565-1571. Doulatov, S., Notta, F., Rice, K. L., Howell, L., Zelent, A., Licht, J. D. and Dick, J. E. (2009). PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Gene Dev. 23, 2076-2087. Ema, H. and Suda, T. (2012). Two anatomically distinct niches regulate stem cell activity. Blood 120, 2174-2181. Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S. and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 26, 407-415. Gan, H., Lin, X., Zhang, Z., Zhang, W., Liao, S., Wang, L. and Han, C. (2011). piRNA profiling during specific stages of mouse spermatogenesis. RNA 17, 1191-1203. Garcia, T. X. and Hofmann, M. C. (2013). NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle 12, 2538-2545. Garcia, T. X., DeFalco, T., Capel, B. and Hofmann, M. C. (2013). Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol. 377, 188-201. Gassei, K. and Orwig, K. E. (2013). SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS ONE 8, e53976. Ginsburg, M., Snow, M. H. and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521-528. Goertz, M. J., Wu, Z., Gallardo, T. D., Hamra, F. K. and Castrillon, D. H. (2011). Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest. 121, 3456-3466. Gondor, A. and Ohlsson, R. (2009). Replication timing and epigenetic reprogramming of gene expression: a two-way relationship? Nat Rev Genet. 10, 269-276. Gowher, H. and Jeltsch, A. (2002). Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 277, 20409-20414. Grabole, N., Tischler, J., Hackett, J. A., Kim, S., Tang, F., Leitch, H. G., Magnusdottir, E. and Surani, M. A. (2013). Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Reports 14, 629-637. Guenatri, M., Duffie, R., Iranzo, J., Fauque, P. and Bourc'his, D. (2013). Plasticity in Dnmt3L-dependent and -independent modes of de novo methylation in the developing mouse embryo. Development 140, 562-572. Hao, J., Yamamoto, M., Richardson, T. E., Chapman, K. M., Denard, B. S., Hammer, R. E., Zhao, G. Q. and Hamra, F. K. (2008). Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells 26, 1587-1597. Hara, S., Takano, T., Fujikawa, T., Yamada, M., Wakai, T., Kono, T. and Obata, Y. (2014). Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet. 2014 Mar 18. [Epub ahead of print]. Hasegawa, K., Namekawa, S. H. and Saga, Y. (2013). MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells 31, 2517-2527. Hata, K., Okano, M., Lei, H. and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993. Hata, K., Kusumi, M., Yokomine, T., Li, E. and Sasaki, H. (2006). Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev. 73, 116-122. He, L. Z., Bhaumik, M., Tribioli, C., Rego, E. M., Ivins, S., Zelent, A. and Pandolfi, P. P. (2000). Two critical hits for promyelocytic leukemia. Mol Cell 6, 1131-1141. He, S., Nakada, D. and Morrison, S. J. (2009). Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 25, 377-406. He, Z., Kokkinaki, M. and Dym, M. (2009). Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech. 72, 586-595. He, Z., Jiang, J., Kokkinaki, M., Golestaneh, N., Hofmann, M. C. and Dym, M. (2008). Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26, 266-278. Heinemeyer, T., Wingender, E., Reuter, I., Hermjakob, H., Kel, A. E., Kel, O. V., Ignatieva, E. V., Ananko, E. A., Podkolodnaya, O. A., Kolpakov, F. A. et al. (1998). Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 26, 362-367. Hobbs, R. M., Seandel, M., Falciatori, I., Rafii, S. and Pandolfi, P. P. (2010). Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142, 468-479. Hobbs, R. M., Fagoonee, S., Papa, A., Webster, K., Altruda, F., Nishinakamura, R., Chai, L. and Pandolfi, P. P. (2012). Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10, 284-298. Holz-Schietinger, C. and Reich, N. O. (2010). The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J Biol Chem. 285, 29091-29100. Hsiao, F. S., Cheng, C. C., Peng, S. Y., Huang, H. Y., Lian, W. S., Jan, M. L., Fang, Y. T., Cheng, E. C., Lee, K. H., Cheng, W. T. et al. (2010). Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif. 43, 235-248. Hu, Y. C., de Rooij, D. G. and Page, D. C. (2013). Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice. Proc Natl Acad Sci U S A. 110, 12685-12690. Hu, Y. G., Hirasawa, R., Hu, J. L., Hata, K., Li, C. L., Jin, Y., Chen, T., Li, E., Rigolet, M., Viegas-Pequignot, E. et al. (2008). Regulation of DNA methylation activity through Dnmt3L promoter methylation by Dnmt3 enzymes in embryonic development. Hum Mol Genet. 17, 2654-2664. Huang, Y. H., Chin, C. C., Ho, H. N., Chou, C. K., Shen, C. N., Kuo, H. C., Wu, T. J., Wu, Y. C., Hung, Y. C., Chang, C. C. et al. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J. 23, 2076-2087. Huntriss, J., Hinkins, M., Oliver, B., Harris, S. E., Beazley, J. C., Rutherford, A. J., Gosden, R. G., Lanzendorf, S. E. and Picton, H. M. (2004). Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev. 67, 323-336. Ichiyanagi, T., Ichiyanagi, K., Miyake, M. and Sasaki, H. (2013). Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 41, 738-745. Ishii, K., Kanatsu-Shinohara, M., Toyokuni, S. and Shinohara, T. (2012). FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139, 1734-1743. Ishizu, H., Siomi, H. and Siomi, M. C. (2012). Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 26, 2361-2373. Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. and Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251. Kanehisa, M. and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. Kang, S. I., Choi, H. W. and Kim, I. Y. (2008). Redox-mediated modification of PLZF by SUMO-1 and ubiquitin. Biochem Biophys Res Commun. 369, 1209-1214. Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D. and Kent, W. J. (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493-496. Kashimada, K. and Koopman, P. (2010). Sry: the master switch in mammalian sex determination. Development 137, 3921-3930. Kato, Y., Kaneda, M., Hata, K., Kumaki, K., Hisano, M., Kohara, Y., Okano, M., Li, E., Nozaki, M. and Sasaki, H. (2007). Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 16, 2272-2280. Kaucher, A. V., Oatley, M. J. and Oatley, J. M. (2012). NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod. 86, 164, 161-111. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. Kobayashi, H., Sakurai, T., Imai, M., Takahashi, N., Fukuda, A., Yayoi, O., Sato, S., Nakabayashi, K., Hata, K., Sotomaru, Y. et al. (2012). Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8, e1002440. Kubota, H., Avarbock, M. R. and Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A. 100, 6487-6492. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Takamatsu, K., Chuma, S., Kojima-Kita, K., Shiromoto, Y., Asada, N., Toyoda, A., Fujiyama, A. et al. (2010). MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887-892. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T. W. et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908-917. La Salle, S., Mertineit, C., Taketo, T., Moens, P. B., Bestor, T. H. and Trasler, J. M. (2004). Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol. 268, 403-415. La Salle, S., Oakes, C. C., Neaga, O. R., Bourc'his, D., Bestor, T. H. and Trasler, J. M. (2007). Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev Biol. 7, 104. Lee, J., Kanatsu-Shinohara, M., Morimoto, H., Kazuki, Y., Takashima, S., Oshimura, M., Toyokuni, S. and Shinohara, T. (2009). Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5, 76-86. Lee, J., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Kimura, T., Nakano, T., Ogura, A. and Shinohara, T. (2007). Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134, 1853-1859. Lees-Murdock, D. J., Shovlin, T. C., Gardiner, T., De Felici, M. and Walsh, C. P. (2005). DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn. 232, 992-1002. Li, J. Y., Lees-Murdock, D. J., Xu, G. L. and Walsh, C. P. (2004). Timing of establishment of paternal methylation imprints in the mouse. Genomics 84, 952-960. Lim, C. Y., Tam, W. L., Zhang, J., Ang, H. S., Jia, H., Lipovich, L., Ng, H. H., Wei, C. L., Sung, W. K., Robson, P. et al. (2008). Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 3, 543-554. Lin, I. G., Han, L., Taghva, A., O'Brien, L. E. and Hsieh, C. L. (2002). Murine de novo methyltransferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol Cell Biol. 22, 704-723. Liu, L., Souto, J., Liao, W., Jiang, Y., Li, Y., Nishinakamura, R., Huang, S., Rosengart, T., Yang, V., Schuster, M. et al. (2013). Histone lysine-specific demethylase 1 (LSD1) protein is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells. J Biol Chem. 288, 34719-34728. Lu, J., Jeong, H. W., Kong, N., Yang, Y., Carroll, J., Luo, H. R., Silberstein, L. E., Yupoma and Chai, L. (2009). Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 4, e5577. Lucifero, D., La Salle, S., Bourc'his, D., Martel, J., Bestor, T. H. and Trasler, J. M. (2007). Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev Biol. 7, 36. Luteijn, M. J. and Ketting, R. F. (2013). PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 14, 523-534. Ma, L., Buchold, G. M., Greenbaum, M. P., Roy, A., Burns, K. H., Zhu, H., Han, D. Y., Harris, R. A., Coarfa, C., Gunaratne, P. H. et al. (2009). GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 5, e1000635. Ma, Y., Cui, W., Yang, J., Qu, J., Di, C., Amin, H. M., Lai, R., Ritz, J., Krause, D. S. and Chai, L. (2006). SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 108, 2726-2735. MA., H., J., C. and S., E. (1999). What are the spermatocyte’s requirements for successful meiotic division. J Exp Zool. 285, 243-250. Magnusdottir, E. and Surani, M. A. (2014). How to make a primordial germ cell. Development 141, 245-252. Magnusdottir, E., Dietmann, S., Murakami, K., Gunesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B. and Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol. 15, 905-915. Mahadevaiah, S. K., Bourc'his, D., de Rooij, D. G., Bestor, T. H., Turner, J. M. and Burgoyne, P. S. (2008). Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J Cell Biol. 182, 263-276. Maier, H., Colbert, J., Fitzsimmons, D., Clark, D. and Hagman, J. (2003). Activation of the early B-cell-specific mb-1 (Ig-alpha) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol Cell Biol. 23, 1946-1960. Matzuk, M. M. and Lamb, D. J. (2008). The biology of infertility: research advances and clinical challenges. Nat Med. 14, 1197-1213. McConnell, M. J., Chevallier, N., Berkofsky-Fessler, W., Giltnane, J. M., Malani, R. B., Staudt, L. M. and Licht, J. D. (2003). Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol. 23, 9375-9388. McLean, D. J., Friel, P. J., Johnston, D. S. and Griswold, M. D. (2003). Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biol Reprod. 69, 2085-2091. Mi, H., Muruganujan, A., Casagrande, J. T. and Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 8, 1551-1566. Moreno, S. G., Attali, M., Allemand, I., Messiaen, S., Fouchet, P., Coffigny, H., Romeo, P. H. and Habert, R. (2010). TGFbeta signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev Biol. 342, 74-84. Nakagawa, T., Nabeshima, Y. and Yoshida, S. (2007). Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell. 12, 195-206. Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E. and Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328, 62-67. Nanba, D., Mammoto, A., Hashimoto, K. and Higashiyama, S. (2003). Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. J Cell Biol. 163, 489-502. Niles, K. M., Chan, D., La Salle, S., Oakes, C. C. and Trasler, J. M. (2011). Critical period of nonpromoter DNA methylation acquisition during prenatal male germ cell development. PLoS ONE 6, e24156. Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B. and Trasler, J. M. (2007). A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A. 104, 228-233. Oatley, J. M. and Brinster, R. L. (2008). Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 24, 263-286. Oatley, J. M. and Brinster, R. L. (2012). The germline stem cell niche unit in mammalian testes. Physiol Rev. 92, 577-595. Oatley, J. M., Avarbock, M. R. and Brinster, R. L. (2007). Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 282, 25842-25851. Ogawa, T., Arechaga, J. M., Avarbock, M. R. and Brinster, R. L. (1997). Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 41, 111-122. Oikawa, T., Kamiya, A., Kakinuma, S., Zeniya, M., Nishinakamura, R., Tajiri, H. and Nakauchi, H. (2009). Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology 136, 1000-1011. Oikawa, T., Kamiya, A., Zeniya, M., Chikada, H., Hyuck, A. D., Yamazaki, Y., Wauthier, E., Tajiri, H., Miller, L. D., Wang, X. W. et al. (2013). Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57, 1469-1483. Ono, R., Masuya, M., Nakajima, H., Enomoto, Y., Miyata, E., Nakamura, A., Ishii, S., Suzuki, K., Shibata-Minoshima, F., Katayama, N. et al. (2013). Plzf drives MLL-fusion-mediated leukemogenesis specifically in long-term hematopoietic stem cells. Blood 122, 1271-1283. Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S. P., Allis, C. D. et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717. Orford, K. W. and Scadden, D. T. (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 9, 115-128. Pauli, A., Rinn, J. L. and Schier, A. F. (2011). Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 12, 136-149. Payne, C. and Braun, R. E. (2006). Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol. 293, 461-472. Puszyk, W., Down, T., Grimwade, D., Chomienne, C., Oakey, R. J., Solomon, E. and Guidez, F. (2013). The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J. 32, 1941-1952. Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. Rao, S., Zhen, S., Roumiantsev, S., McDonald, L. T., Yuan, G. C. and Orkin, S. H. (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 30, 5364-5380. Rice, K. L., Hormaeche, I., Doulatov, S., Flatow, J. M., Grimwade, D., Mills, K. I., Leiva, M., Ablain, J., Ambardekar, C., McConnell, M. J. et al. (2009). Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 114, 5499-5511. Robine, N., Lau, N. C., Balla, S., Jin, Z., Okamura, K., Kuramochi-Miyagawa, S., Blower, M. D. and Lai, E. C. (2009). A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol. 19, 2066-2076. Saba, R., Kato, Y. and Saga, Y. (2014). NANOS2 promotes male germ cell development independent of meiosis suppression. Dev Biol. 385, 32-40. Sada, A., Suzuki, A., Suzuki, H. and Saga, Y. (2009). The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325, 1394-1398. Saitou, M., Kagiwada, S. and Kurimoto, K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139, 15-31. Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S. and Tajima, S. (2004). Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5, 231-237. Sakaki-Yumoto, M., Kobayashi, C., Sato, A., Fujimura, S., Matsumoto, Y., Takasato, M., Kodama, T., Aburatani, H., Asashima, M., Yoshida, N. et al. (2006). The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133, 3005-3013. Sasaki, H. and Matsui, Y. (2008). Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 9, 129-140. Seki, Y., Yamaji, M., Yabuta, Y., Sano, M., Shigeta, M., Matsui, Y., Saga, Y., Tachibana, M., Shinkai, Y. and Saitou, M. (2007). Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134, 2627-2638. Shi, J. and Vogt, P. K. (2009). Posttranslational regulation of Myc by promyelocytic leukemia zinc finger protein. Int J Cancer. 125, 1558-1565. Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., Kono, T. and Sasaki, H. (2013). Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439. Shovlin, T. C., Bourc'his, D., La Salle, S., O'Doherty, A., Trasler, J. M., Bestor, T. H. and Walsh, C. P. (2007). Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Hum Reprod. 22, 457-467. Siomi, M. C. and Kuramochi-Miyagawa, S. (2009). RNA silencing in germlines--exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Curr Opin Cell Biol. 21, 426-434. Slotkin, R. K. and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 8, 272-285. Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S. R. and Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 43, 811-814. Song, H. W. and Wilkinson, M. F. (2014). Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol. 30C, 14-26. Soper, S. F. C., van der Heijden, G. W., Hardiman, T. C., Goodheart, M., Martin, S. L., de Boer, P. and Bortvin, A. (2008). Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell. 15, 285-297. Spencer, S., Cappell, S., Tsai, F., Overton, K., Wang, C. and Meyer, T. (2013). The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369-383. Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H. and Tajima, S. (2004). DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 279, 27816-27823. Sun, H., Wu, J., Wickramasinghe, P., Pal, S., Gupta, R., Bhattacharyya, A., Agosto-Perez, F. J., Showe, L. C., Huang, T. H. and Davuluri, R. V. (2011). Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic Acids Research 39, 190-201. Suzuki, H., Sada, A., Yoshida, S. and Saga, Y. (2009). The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Dev Biol 336, 222-231. Suzuki, H., Ahn, H. W., Chu, T., Bowden, W., Gassei, K., Orwig, K. and Rajkovic, A. (2012). SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol. 361, 301-312. Takashima, S., Takehashi, M., Lee, J., Chuma, S., Okano, M., Hata, K., Suetake, I., Nakatsuji, N., Miyoshi, H., Tajima, S. et al. (2009). Abnormal DNA methyltransferase expression in mouse germline stem cells results in spermatogenic defects. Biol Reprod. 81, 155-164. Tanimura, N., Saito, M., Ebisuya, M., Nishida, E. and Ishikawa, F. (2013). Stemness-related Factor Sall4 Interacts with Transcription Factors Oct-3/4 and Sox2 and Occupies Oct-Sox Elements in Mouse Embryonic Stem Cells. J Biol Chem. 288, 5027-5038. Trapnell, C., Hendrickson, D., Sauvageau, M., Goff, L., Rinn, J. and Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. . Nat Biotechnol. 31, 46-53. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protoc. 7, 562-578. Van Emburgh, B. O. and Robertson, K. D. (2011). Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res. 39, 4984-5002. Vazquez, F., Ramaswamy, S., Nakamura, N. and Sellers, W. R. (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 20, 5010-5008. Vazquez, F., Grossman, S. R., Takahashi, Y., Rokas, M. V., Nakamura, N. and Sellers, W. R. (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem. 276, 48627-48630. Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B. D. and Mourelatos, Z. (2012). Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol. 19, 773-781. Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi-Miyagawa, S., Totoki, Y., Toyoda, A., Hoki, Y., Fujiyama, A., Shibata, T., Sado, T. et al. (2011a). MITOPLD Is a Mitochondrial Protein Essential for Nuage Formation and piRNA Biogenesis in the Mouse Germline. Dev Cell 20, 364-375. Watanabe, T., Tomizawa, S., Mitsuya, K., Totoki, Y., Yamamoto, Y., Kuramochi-Miyagawa, S., Iida, N., Hoki, Y., Murphy, P. J., Toyoda, A. et al. (2011b). Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848-852. Webster, K. E., O'Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., Harrison, D. K., Aung, H., Phutikanit, N., Lyle, R. et al. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A. 102, 4068-4073. Wienholz, B. L., Kareta, M. S., Moarefi, A. H., Gordon, C. A., Ginno, P. A. and Chedin, F. (2010). DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet. 6, e1001106. Xie, Z. H., Huang, Y. N., Chen, Z. X., Riggs, A. D., Ding, J. P., Gowher, H., Jeltsch, A., Sasaki, H., Hata, K. and Xu, G. L. (2006). Mutations in DNA methyltransferase DNMT3B in ICF syndrome affect its regulation by DNMT3L. Hum Mol Genet. 15, 1375-1385. Yang, F., Yao, Y., Jiang, Y., Lu, L., Ma, Y. and Dai, W. (2012). Sumoylation is important for stability, subcellular localization, and transcriptional activity of SALL4, an essential stem cell transcription factor. J Biol Chem. 287, 38600-38608. Yang, J., Corsello, T. R. and Ma, Y. (2012). Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J Biol Chem. 287, 1996-2005. Yang, J., Aguila, J. R., Alipio, Z., Lai, R., Fink, L. M. and Ma, Y. (2011). Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol. 4, 38. Yang, J. C., Chai, L., Fowles, T. C., Alipio, Z., Xu, D., Fink, L. M., Ward, D. C. and Ma, Y. P. (2008a). Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc Natl Acad Sci U S A. 105, 19756-19761. Yang, J. C., Chai, L., Gao, C., Fowles, T. C., Alipio, Z., Dang, H. E., Xu, D., Fink, L. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58159 | - |
| dc.description.abstract | 正確的建立與調整表觀基因組是產製具有完整功能之生殖細胞的要素。相關的研究指出,擁有留駐於靜止態的能力是前精原细胞進行完善分化與避免精原幹/前驅细胞提前進入早熟之耗盡的必要條件,但調控精原幹/前驅细胞穩定於靜止態的內在表觀基因之調節者仍然有待研究與發掘。類3號DNA甲基化酶 (DNMT3L)是一個詮釋染色質狀態與協助DNA 甲基化作用的表觀基因調節者,在此篇論文,我們探討類3號DNA甲基化酶於維持生殖細胞群的角色。我們的研究結果證實,在小鼠出生後的睪丸,類3號DNA甲基化酶表現於THY1+ 精原幹/前驅细胞族群。我們的研究指出,類3號DNA甲基化酶藉由調控Cdk2/CDK2的表現,進而影響 PLZF的蛋白質穩定度。在出生八天的THY1+ 精原幹/前驅细胞,類3號甲基酶的缺失會造成ETS1鍵結於已高度H3K4me3修飾的Cdk2 啟動子,以調節Cdk2/CDK2 的表現量。此外,我們亦觀察到CDK2會與PLZF鍵結,且類3號DNA甲基化酶的缺失會造成PLZF被過量泛素化。類3號DNA甲基化酶影響著PLZF的穩定性,減弱的PLZF進而釋放它的的束縛蛋白質(SALL4),造成過量的下游ERK與AKT訊息傳遞鍊的表現,及導致過量的精原幹/前驅细胞增生。這些研究的結果呈現,類3號DNA甲基化酶在避免精原幹/前驅细胞的提前早熟、維持增生與靜止態的平衡,扮演著重要的角色。
因為類3號DNA甲基化酶的已知功能為抑制跳躍基因,且小片段RNA (piRNA)已知與跳躍基因靜默有著高度關聯。我們進一步探討小片段RNA (piRNA)之相關聯的成員的表現狀態,我們的研究結果指出,在調節整體跳躍基因靜默的胚胎時期(E18.5),類3號DNA甲基化酶會影響著MAEL的表現位置。此外,我們的研究成果亦發現在出生後的THY1+ 精原幹/前驅细胞,類3號DNA甲基化酶的缺失會造成減量的細胞質MAEL表現。此低量的MAEL表現量與其錯位的分布可能是類3號DNA甲基化酶缺失之雄性生殖細胞呈現不正常的小片段RNA (piRNA)成分組成的其一原因 。 整合前述之研究成果,這些新發現提供了類3號DNA甲基化酶在雄性生殖細胞的新功能: 類3號DNA甲基化酶藉由調節精原幹/前驅细胞的增生與分化、影響小片段RNA (piRNA)的相關路徑,維持雄性生細胞之恆定。 | zh_TW |
| dc.description.abstract | The establishment and rearrangement of proper germline epigenome is crucial for generating functional germ cells. Accumulating results demonstrated that the ability of prosprematogonia and spermatogonial stem/progenitor cells (SPCs) to reside in a quiescent state is important for prospermatogonia differentiation and preventing premature exhaustion of the postnatal stem cell pool. However, the intrinsic epigenetic factors that regulate SPC quiescence are largely unknown. Here, we investigated how DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator important for interpreting chromatin context and facilitating de novo DNA methylation, sustains the long-term male germ cell pool. We demonstrated that stem cell-enriched THY1+ SPCs constitute a DNMT3L-expressing population in the postnatal testes. DNMT3L influenced the stability of PLZF, potentially by downregulating Cdk2/CDK2 expression, which sequestered CDK2-mediated PLZF degradation. Increased level of ETS1 was found to bind the DNA hypomethylated and H3K4me3-over-accumulated Cdk2 promoter that extended Cdk2/CDK2 expression in 8 dpp Dnmt3l KO THY1+ cells. In addition, CDK2 interacted with PLZF in THY1+ cells and PLZF was excessively post-translational modification with ubiquitin in Dnmt3l KO THY1+ cells, suggesting that DNMT3L participates in the regulation of PLZF stability in postnatal germ cells. Reduced PLZF in Dnmt3l KO THY1+ cells released its antagonist, SALL4A, which overactivated ERK and AKT signaling cascades to stimulate SPC proliferation. These results indicate that DNMT3L is required for preventing premature SPC exhaustion and to delicately balance the cycling and quiescence of SPCs.
Since a well-known function of DNMT3L is to repress transposable elements (TEs) in order to safeguard the integrity of the genome. PiRNAs are highly involved in TE silencing in male germ cells. Further analysis of piRNA-related components revealed that Dnmt3l KO embryonic germ cells display detachment of some cytoplasmic MAEL from P-body components in E18.5 when genome-wide transposon silencing is undergoing. Furthermore, we observed that postnatal Dnmt3l KO THY1+ germ cells exhibit less MAEL protein in the cytoplasmic fraction compared to wild-type THY1+ germ cells. The aberrant MAEL expression and subcellular distribution may account for the abnormal characteristics of piRNA compositions in Dnmt3l KO germ cells. Cumulatively, these findings provide novel roles for DNMT3L in mouse male germ cells. DNMT3L is important for germline maintenance via influencing SPC self-renewal/differentiation-associated factors and the piRNA-related pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:07:09Z (GMT). No. of bitstreams: 1 ntu-103-D97642009-1.pdf: 5840179 bytes, checksum: 8ae405d31dae4a01897e599af74c790d (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT............................................................................................................. i 摘要.......................................................................................................................... iii TABLE OF CONTENTS.......................................................................................... v LIST OF TABLES.................................................................................................... viii LIST OF FIGURES.................................................................................................. x ABBREVIATIONS.................................................................................................. xi CHAPTER ONE Literature review...................................................................................................... 1 LITERATURE REVIEW.......................................................................................... 2 1. Spermatogenesis, a model for tissue homeostasis................................................. 2 1.1. Origin of spermatogonial stem/progenitor cells (SPCs).................................... 2 1.2. SPC maintenance and their associated niche microenvironment...................... 4 2. DNA methyltransferase 3-like (DNMT3L) and its attraction in stem cell research..................................................................................................................... 8 2.1. Domains and functions of DNMT3L.................................................................. 8 2.2. The roles of DNMT3L in pre-implantation embryo and female germ cell development.............................................................................................................. 10 2.3. The roles of DNMT3L in male germ cell development....................................... 12 2.4. Potential connection between DNMT3L and the piRNA-associated pathway... 13 SIGNIFICANE......................................................................................................... 22 CHAPTER TWO DNMT3L promotes quiescence in postnatal SPCs................................................... 23 1. Introduction.......................................................................................................... 24 2. Results.................................................................................................................. 26 2.1. The potential roles of DNMT3L in mouse postnatal SPCs................................ 26 2.2. Significant expression of DNMT3L in postnatal THY1+ cells............................ 29 2.3. Increased cell proliferation and elevated CDK2 expression in Dnmt3l KO THY1+ SPCs............................................................................................................. 31 2.4. Decreased quiescence among Dnmt3l KO THY1+ SPCs................................... 32 2.5. Essential function of DNMT3L in PLZF stability............................................... 34 2.6. Increased SALL4B expression and SALL4A/PLZF ratio in Dnmt3l KO THY1+ cells........................................................................................................................... 35 2.7. Summary............................................................................................................ 37 3. Discussion The significance of DNMT3L in postnatal germline maintenance........................... 38 3.1. The function of DNMT3L in modulating SPC cell cycling intrinsically............. 38 3.2. An implication of DNMT3L in SPC differentiation............................................ 42 3.3. Potential roles of DNMT3L in homeostasis of niche microenvironment........... 43 3.4. Different involvements of DNMT3L at the embryonic and postnatal stages...... 44 3.5. An implication of DNMT3L in other adult stem cells......................................... 46 4. Conclusion............................................................................................................ 47 CHAPTER THREE The potential roles of DNMT3L in piRNA biogenesis and piRNA-mediated gene silencing.................................................................................................................... 72 1. Introduction.......................................................................................................... 73 2. Results.................................................................................................................. 74 2.1. Decreased MAEL expression in Dnmt3l KO THY1+ SPCs............................... 74 2.2. Aberrant MAEL subcellular distribution in Dnmt3l KO germ cells.................. 74 2.3. Aberrant piRNA composition in Dnmt3l KO germ cells..................................... 75 2.4. Summary............................................................................................................ 77 3. Discussion The potential mechanisms of DNMT3L-involved TE silencing in male germ cells........................................................................................................................... 78 4. Conclusion............................................................................................................ 81 CHAPTER FOUR Materials and Methods............................................................................................. 93 CHAPTER FIVE Reference.................................................................................................................. 113 Curriculum Vitae...................................................................................................... 134 | |
| dc.language.iso | en | |
| dc.subject | 跳躍基因靜默 | zh_TW |
| dc.subject | 類3號DNA甲基化? | zh_TW |
| dc.subject | 前精原?胞 | zh_TW |
| dc.subject | 精原幹/前驅?胞 | zh_TW |
| dc.subject | 靜止態 | zh_TW |
| dc.subject | 生殖細胞的維持 | zh_TW |
| dc.subject | prospermatogonia | en |
| dc.subject | DNMT3L | en |
| dc.subject | transposon silencing | en |
| dc.subject | piRNAs | en |
| dc.subject | germline maintenance | en |
| dc.subject | quiescence | en |
| dc.subject | spermatogonial stem/progenitor cells | en |
| dc.title | 類3號DNA甲基化酶於小鼠雄性生殖前驅細胞之恆定維持與分化調控的角色 | zh_TW |
| dc.title | The functions of DNMT3L in spermatogonial progenitor cell homeostasis and differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 宋麗英(Li-Ying Sung),黃彥華(Yen-Hua Huang),王學偉(Hsei-Wei Wang),吳信志(Shinn-Chih Wu),蔡孟勳(Mong-Hsun Tsai) | |
| dc.subject.keyword | 類3號DNA甲基化?,前精原?胞,精原幹/前驅?胞,靜止態,生殖細胞的維持,跳躍基因靜默, | zh_TW |
| dc.subject.keyword | DNMT3L,prospermatogonia,spermatogonial stem/progenitor cells,quiescence,germline maintenance,piRNAs,transposon silencing, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
