請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58128完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳青錫(Ching-Shyi Wu) | |
| dc.contributor.author | Keng-Ru Lin | en |
| dc.contributor.author | 林耿如 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:06:29Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-16 | |
| dc.identifier.citation | 1. Rouse, J., and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551. 2. Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071-1078. 3. Smith, J., Tho, L.M., Xu, N., and Gillespie, D.A. (2010). The ATM–Chk2 and ATR–Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research 108, 73-112. 4. Kinner, A., Wu, W., Staudt, C., and Iliakis, G. (2008). γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Research 36, 5678-5694. 5. Beishline, K., and Azizkhan-Clifford, J. (2014). Interplay between the cell cycle and double-strand break response in mammalian cells. Methods in Molecular Biology 1170, 41-59. 6. Yazinski, S.A., and Zou, L. (2016). Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annual Review of Genetics 50, 155-173. 7. Maréchal, A., and Zou, L. (2015). RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Research 25, 9-23. 8. Maréchal, A., and Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology 5, a012716. 9. Duursma, A.M., Driscoll, R., Elias, J.E., and Cimprich, K.A. (2013). A role for the MRN complex in ATR activation via TOPBP1 recruitment. Molecular Cell 50, 116-122. 10. Murphy, A.K., Fitzgerald, M., Ro, T., Kim, J.H., Rabinowitsch, A.I., Chowdhury, D., Schildkraut, C.L., and Borowiec, J.A. (2014). Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. Journal of Cell Biology 206, 493-507. 11. Jain, A., Bacolla, A., del Mundo, I.M., Zhao, J., Wang, G., and Vasquez, K.M. (2013). DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Research 41, 10345-10357. 12. Jarmoskaite, I., and Russell, R. (2014). RNA helicase proteins as chaperones and remodelers. Annual Review of Biochemistry 83, 697-725. 13. Zhang, S., Herrmann, C., and Grosse, F. (1999). Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A). Journal of Cell Science 112, 1055-1064. 14. Lee, T., and Pelletier, J. (2016). The biology of DHX9 and its potential as a therapeutic target. Oncotarget 7, 42716-42739. 15. Sollier, J., and Cimprich, K.A. (2015). Breaking bad: R-loops and genome integrity. Trends in Cell Biology 25, 514-522. 16. Chakraborty, P., Huang, J.T., and Hiom, K. (2018). DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nature Communications 9, 1-14. 17. Cristini, A., Groh, M., Kristiansen, M.S., and Gromak, N. (2018). RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Reports 23, 1891-1905. 18. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., and Lerenthal, Y. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166. 19. Bennetzen, M.V., Larsen, D.H., Bunkenborg, J., Bartek, J., Lukas, J., and Andersen, J.S. (2010). Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Molecular Cellular Proteomics 9, 1314-1323. 20. Stokes, M.P., Rush, J., MacNeill, J., Ren, J.M., Sprott, K., Nardone, J., Yang, V., Beausoleil, S.A., Gygi, S.P., and Livingstone, M. (2007). Profiling of UV-induced ATM/ATR signaling pathways. Proceedings of the National Academy of Sciences 104, 19855-19860. 21. Lee, C.-G., da Costa Soares, V., Newberger, C., Manova, K., Lacy, E., and Hurwitz, J. (1998). RNA helicase A is essential for normal gastrulation. Proceedings of the National Academy of Sciences 95, 13709-13713. 22. Pommier, Y., Sun, Y., Shar-yin, N.H., and Nitiss, J.L. (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews Molecular Cell Biology 17, 703-721. 23. Mah, L., El-Osta, A., and Karagiannis, T. (2010). γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679-686. 24. Cheng, D.-d., Zhang, H.-z., Yuan, J.-q., Li, S.-j., Yang, Q.-c., and Fan, C.-y. (2017). Minichromosome maintenance protein 2 and 3 promote osteosarcoma progression via DHX9 and predict poor patient prognosis. Oncotarget 8, 26380-26393. 25. Aktaş, T., Ilık, İ.A., Maticzka, D., Bhardwaj, V., Rodrigues, C.P., Mittler, G., Manke, T., Backofen, R., and Akhtar, A. (2017). DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115-119. 26. Lee, T., Di Paola, D., Malina, A., Mills, J.R., Kreps, A., Grosse, F., Tang, H., Zannis-Hadjopoulos, M., Larsson, O., and Pelletier, J. (2014). Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. Journal of Biological Chemistry 289, 22798-22814. 27. Traven, A., and Heierhorst, J. (2005). SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA‐damage‐response proteins. Bioessays 27, 397-407. 28. Koç, A., Wheeler, L.J., Mathews, C.K., and Merrill, G.F. (2004). Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. Journal of Biological Chemistry 279, 223-230. 29. Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-611. 30. Chakraborty, P., and Grosse, F. (2011). Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10, 654-665. 31. Sordet, O., Nakamura, A.J., Redon, C.E., and Pommier, Y. (2010). DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9, 274-278. 32. Anderson, S.F., Schlegel, B.P., Nakajima, T., Wolpin, E.S., and Parvin, J.D. (1998). BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetics 19, 254-256. 33. Chakraborty, P., and Hiom, K. (2019). DHX9-dependent recruitment of BRCA1 to RNA is required to promote DNA end resection in homologous recombination. BioRxiv. 34. Matsui, M., Sakasai, R., Abe, M., Kimura, Y., Kajita, S., Torii, W., Katsuki, Y., Ishiai, M., Iwabuchi, K., and Takata, M. (2020). USP42 enhances homologous recombination repair by promoting R-loop resolution with a DNA–RNA helicase DHX9. Oncogenesis 9, 1-13. 35. Skourti-Stathaki, K., Proudfoot, N.J., and Gromak, N. (2011). Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Molecular Cell 42, 794-805. 36. Lockhart, A., Pires, V.B., Bento, F., Kellner, V., Luke-Glaser, S., Yakoub, G., Ulrich, H.D., and Luke, B. (2019). RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Reports 29, 2890-2900. 37. Lin, Y.-C., Yu, Y.-S., Lin, H.-H., and Hsiao, K.-Y. (2020). Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers 12, 697. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58128 | - |
| dc.description.abstract | DHX9為NTP-dependent DExH-box helicase,是一種能利用水解NTP所產生的能量,解開雙股RNA、雙股DNA、DNA/RNA雜合體等複雜結構的解旋酶。DHX9對許多細胞生理過程相當重要,包含RNA轉錄及轉錄後加工、DNA複製,以及近期發現維護基因體穩定性之功能。 ATM和ATR是DNA損傷訊息傳遞路徑中的兩個主要訊息傳遞激酶,他們會藉由磷酸化受質的SQ/TQ motifs調控DNA損傷修復。過去的磷酸化蛋白質體研究指出,DHX9的Ser321或Ser688位點會被ATM或ATR磷酸化,這暗示在DNA損傷後ATM或ATR可能會調控DHX9。因此,我首先要探討DHX9是否參與DNA損傷修復機制。實驗結果顯示沉默DHX9基因會減少ATR-Chk1訊息傳遞路徑的活化,但並不影響DNA合成、DNA雙股斷裂的產生和募集RPA到DNA損傷位置。細胞存活分析也顯示沉默DHX9會使癌細胞對ATR抑制更加敏感,暗示DHX9可能作用在ATR-Chk1訊息傳遞路徑。另外,透過蛋白質體分析,我找出許多會和DHX9交互作用的蛋白質,他們可能進而影響DHX9對ATR-Chk1訊息傳遞路徑的調控。藉由不同的基因毒性物質,我證實ATR會主導DHX9 Ser321位點的磷酸化,而沉默DHX9會在DNA損傷情況下使R-loops生成增加。進一步研究也顯示,在沒有基因毒性壓力情況下,表現DHX9的S321/688A phosphor (DS)或helicase/ATPase-dead (DE)突變型都會導致γH2AX及RPA pSer4/Ser8表現量上升。 總結來說,我認為DHX9會調控ATR-Chk1訊息傳遞路徑,且ATR對DHX9的調控為前饋控制。 | zh_TW |
| dc.description.abstract | DHX9 is a NTP-dependent DExH-box helicase that can hydrolyze different NTPs to unwind RNA or DNA duplexes, DNA/RNA hybrids, and other more complex structures. DHX9 is important for many cellular processes including transcription, processing of RNA, DNA replication, and a recent emerging role in the maintenance of genomic stability. ATM and ATR are two major transducer kinases in DNA damage-signaling pathways, which coordinate the DNA damage response (DDR) via phosphorylation of substrates on SQ/TQ motifs. Previous phosphoproteomic studies have demonstrated that Ser321 and Ser688 of DHX9 are phosphorylated by ATM/ATR, suggesting the regulation of DHX9 by ATM/ATR in response to DNA damage. Here I first investigated whether DHX9 participates in the DDR. The depletion of DHX9 results in reduced activation of the ATR-Chk1 signaling pathway, whereas DNA synthesis, the formation of DNA double-stranded breaks (DSBs), and the recruitment of RPA to sites of DNA damage are not affected. Cell viability assay further shows that cancer cells depleted of DHX9 are hypersensitive to ATR inhibitor suggesting DHX9 functions in the ATR-Chk1 signaling pathway. Furthermore, proteomic analysis reveals numerous DHX9 interactors that may potentially account for the DHX9 regulated ATR-Chk1 signaling pathway. Next, I confirmed that DHX9 is mainly phosphorylated at Ser321 by ATR in response to different types of genotoxic agents. The knockdown of DHX9 leads to an increased formation of R-loops upon DNA damage. Further investigation shows that expressing S321/688A phosphor (DS) or helicase/ATPase-dead (DE) mutants result in increased γH2AX and RPA pSer4/Ser8 in the absence of genotoxic stress. Collectively, I proposed that DHX9 regulates the ATR-Chk1 signaling pathway and the existence of a feed-forward loop of ATR-DHX9 circuitry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:29Z (GMT). No. of bitstreams: 1 U0001-1507202005225400.pdf: 4677705 bytes, checksum: 9349bb5272846d3efd73d04704208e39 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………… i 致謝 ………………………………………………………………………………… ii Abbreviation ………………………………………………………… iii-iv 中文摘要 ……………………………………………………………………… v Abstract …………………………………………………………………… vi-vii Introduction ………………………………………………………… 1-3 Aim ………………………………………………………………………………… 4 Materials and Methods ………………………………… 5-12 Results ……………………………………………………………………… 13-22 Discussions …………………………………………………………… 23-25 Figures ……………………………………………………………………… 26-58 Tables ………………………………………………………………………… 59-60 References ……………………………………………………………… 61-65 | |
| dc.language.iso | zh-TW | |
| dc.subject | DHX9 | zh_TW |
| dc.subject | DNA損傷修復 | zh_TW |
| dc.subject | DNA損傷訊息傳遞路徑 | zh_TW |
| dc.subject | ATR-Chk1訊息傳遞路徑 | zh_TW |
| dc.subject | R-loops | zh_TW |
| dc.subject | ATR-Chk1 signaling pathway | en |
| dc.subject | DNA damage response | en |
| dc.subject | DNA damage-signaling pathways | en |
| dc.subject | DHX9 | en |
| dc.subject | R-loops | en |
| dc.title | DHX9解旋酶在基因體穩定性之角色 | zh_TW |
| dc.title | The role of DHX9 in genomic stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),林敬哲(Jing-Jer Lin),朱雪萍(Hsueh-Ping Chu) | |
| dc.subject.keyword | DHX9,DNA損傷修復,DNA損傷訊息傳遞路徑,ATR-Chk1訊息傳遞路徑,R-loops, | zh_TW |
| dc.subject.keyword | DHX9,DNA damage response,DNA damage-signaling pathways,ATR-Chk1 signaling pathway,R-loops, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202001528 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202005225400.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
