Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58114
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣明晃(Ming-Huang Chiang)
dc.contributor.authorTzu-Cheng Chuangen
dc.contributor.author莊子承zh_TW
dc.date.accessioned2021-06-16T08:06:13Z-
dc.date.available2019-07-04
dc.date.copyright2014-07-04
dc.date.issued2014
dc.date.submitted2014-06-21
dc.identifier.citationHansjorg Albrecher, Philipp Mayer, Wim Schoutens, and Jurgen Tistaert, “The Little Heston Trap”, Wilmott Magazine, pp. 83–92, 2007.
Natalia Beliaeva and Nawalkha Sanjay, “A Simple Approach to Pricing American Options under the Heston Stochastic Volatility Model”, The Journal of Derivatives 17 (4), pp. 25–43, 2010.
Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabilities”. Journal of Political Economy 81 (3), pp. 637–654, 1973.
Michael Brennan and Eduardo Schwartz, “Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis”. Journal of Financial and Quantitative Analysis 13 (3), pp. 461–474, September 1978.
Tomas Bjork, “Arbitrage Theory in Continuous Time”, Oxford University Press, 3rd edition, 2009.
John Cox, Stephen Ross, and Mark Rubinstein, “Option pricing: A Simplified Approach”, Journal of Financial Economics 7 (3), pp. 229–263, 1979.
Jim Gatheral, “The Volatility Surface: A Practitioners’s Guide”, Wiley, 2006.
John Cox, Jonathan Ingersoll, and Stephen Ross, “A Theory of the Term Structure of Interest Rates”. Econometrica 53, pp. 385–407, 1985.
Lech Grzelak and Kees Oosterlee, “On the Heston Model with Stochastic Interest Rates”, SIAM Journal on Financial Mathematics 2 (1), pp. 255–286, 2009
David Heath, Robert Jarrow, and Andrew Morton, “Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation”. Journal of Financial and Quantitative Analysis, 25, pp.419–440, 1990.
Steven Heston, “A Closed–Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”. The Review of Financial Studies 6 (2), pp. 327–343, 1993.
Jim Hilliard and Adam Schwartz, “Binominal Option Pricing Under Stochastic Volatility and Correlated State Variables”, Journal of Derivatives 4 (1), pp. 23–39, 1996.
Thomas Ho and Sang Bin Lee, “Term Structure Movements and Pricing Interest Rate Contingent Claims”, Journal of Finance 41, pp. 1011–1029, 1986.
John Hull and Alan White, “The Pricing of Options on Assets with Stochastic Volatility”, Journal of Finance 42, pp. 281–300, 1987.
John Hull and Alan White, “Valuing Derivative Securities Using the Explicit Finite Difference Method”, Journal of Financial and Quantitative Analysis 25(1), pp. 87–100, 1990.
John Hull and Alan White, “Pricing Interest Rate Derivative Securities”, The Review of Financial Studies 3 (4), pp. 573–392, 1990.
John Hull and Alan White, “Numerical Procedures for Implementing Term Structure Models I: Single–Factor Models”, Journal of Derivatives 2 (4), pp. 7–16, 1994.
John Hull and Alan White, “Using Hull-White Interest Rate Trees”, Journal of Derivatives 3 (3), pp. 26–36, 1996.
John Hull, “Options, Futures, and Other Derivatives”, 9th Edition, Prentice Hall, 2008.
Francis Longstaff and Eduardo Schwartz, “Valuing American Options by Simulation: A Simple Least-Squares Approach”, The Review of Financial Studies 14, pp. 113–147, 2001.
Dietmar Leisen,“Stock Evolution Under Stochastic Volatility: A Discrete Approach,” Journal of Derivatives 8 (2), pp. 9-27, 2000.
Daniel Nelson and Krishna Ramaswamy, “Simple Binomial Processes as Diffusion Approximations in Financial Models”, The Review of Financial Studies 3, pp. 393–430, 1990.
Saikat Nandi, “How Important Is the Correlation between Returns and Volatility in a Stochastic Volatility Model? Empirical Evidence from Pricing and Hedging in the S&P 500 Index Options Market”, Journal of Banking & Finance 22 (5), pp. 589–610, 1998.
Mark Rubinstein, “Implied Binomial Trees”, Journal of Finance 49, 771–818, 1994.
Peter Ruckdeschel, Tilman Sayer, and Alexander Szimayer, “Pricing American Options in the Heston Model: A Close Look at Incorporating Correlation”, Journal of Derivatives 20 (3), pp. 9–29, 2013.
Oldrich Vasicek, “An Equilibrium Characterisation of the Term Structure”, Journal of Financial Economics 5 (2): 177–188, 1977.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58114-
dc.description.abstract過往的利率模型大多以固定的volatility來評價利率未來的走勢,然而依照目前世界財經狀況可以合理推估低利率的時代即將結束,未來利率必定調升的情況下,volatility必定有很明顯的波動。在明顯的波動情況下,我們所使用的利率模型並不符合市場狀況,因此使用過往的模型必定會產生顯著的誤差。為了更符合市場,在論文中我利用Heston模型引入了隨機volatility至利率模型當中,藉由Vasicek模型來預估未來的利率,最後使用樹狀圖的方法來預估出可能的利率走勢。zh_TW
dc.description.abstractIn the past, most of the short rate models were pricing with constant volatility. However, constant volatility does not fit the real situation of our financial condition now because Janet L. Yellen implied that the interest rate will continuous go up soon in the future. When the interest rate goes up, the volatility of interest rate has significant fluctuation. Consequently, the models we used to simulate the interest rate with constant volatility are out-of-date. From the above, stochastic volatility should apply into interest rate model to get more precise interest rate. I, therefore, apply stochastic volatility into vasicek model with tree based method to elaborate my work in the thesis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:06:13Z (GMT). No. of bitstreams: 1
ntu-103-R00943077-1.pdf: 1129601 bytes, checksum: e13ef339ef36d58ef9e62e4f6d763ca3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAcknowledgement i
中文摘要 i
Abstract ii
Contents 1
List of Figures 3
List of Tables 4
1. Introduction 5
2. Literature Review 6
2.1 Heston Model and Pricing Methods 6
2.2 Short Rate Model 13
I. The Evolution of the Forward Rate Approach 14
II. The Evolution of the Short-Term Interest Rate 15
2.3 Vasicek Model 16
3. Methodology 18
3.1 Setup and Notation 19
3.2 Construct the Model 20
3.2.1 Binomial Variance Tree Approximation 22
3.2.2 Trinomial Stock Price Tree Approximation 27
3.2.3 Combine Stock and Variance Tree, and Match Correlation 29
4. My Model with Stochastic Volatility 37
4.1 Vasicek model with Stochastic Volatility in Heston Model 37
4.1.1 1st-order Taylor Expansion of the Moment 37
4.1.2 Transition Probability of the Interest Rate Process 43
5. Result 53
5.1 Variance Tree 53
5.2 Interest Rate Tree 55
5.3 Combine Interest Rate and Variance Tree, and Match Correlation 57
6. Conclusion 60
Appendix 61
Derive Equations 61
Transition Probability of the Interest Rate Process 64
Reference 67
dc.language.isoen
dc.subjectVasicek modelzh_TW
dc.subjectHeston modelzh_TW
dc.subjectmoment matchingzh_TW
dc.subjectcorrelationzh_TW
dc.subjecttree methodzh_TW
dc.title具備隨機波動性的 Vasicek (1976)模型的利率樹zh_TW
dc.titleA Pricing Tree under the Vasicek (1976) Model with Stochastic V olatilityen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor李賢源(Shyan-Yuan, Lee)
dc.contributor.oralexamcommittee呂育道(Yuh-Dauh Lyuu)
dc.subject.keywordVasicek model,Heston model,moment matching,correlation,tree method,zh_TW
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2014-06-23
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved