請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾惠斌 | |
| dc.contributor.author | Chia-Chuan Chen | en |
| dc.contributor.author | 陳嘉荃 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:05:58Z | - |
| dc.date.available | 2016-07-16 | |
| dc.date.copyright | 2014-07-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-23 | |
| dc.identifier.citation | 國外文獻:
1. Aldrich, John H. and Nelson, Forrest D. (1984). Linear Probability, Logit, and Probit Models, California, SAGE Publications. 2. Allison, Paul D. (1999). Multiple Regression:A Primer, California, SAGE Publications. 3. Berry, Wiliam D. and Feldman, Stanley (1985). Multiple Regression in Practice. California, SAGE Publications. 4. Hosmer, D. W. et al. (1997). 'A comparison of goodness-of-fit tests for the logistic regression model.' Statistics in Medicine, Vol. 16, pp.965-980 5. Fawcett, Tom (2006).' An introduction to ROC analysis.' Pattern Recognition Letters, Vol. 27, Issue 8, pp. 861–874 6. Geisser, Seymour (1933). Predictive Inference:An Introduction. Florida, CRC Press. 7. Hawkins, Del I et al. (1996). 消費者行為學:執行行銷策略(簡貞玉譯),台北市,五南圖書出版股份有限公司. 8. Hempel, Donald J. and Jain, Subhash C. (1978). 'Home Buyer Behavior: An Empirical Study in Cross-Cultural Buyer Behavior.', Real Estate Economics, Vol. 6, pp.1-21 9. Long, J. S. (1997). Interpreting Probability Model:Logit, Probit, and Other Gerneralized Linear Models. California, SAGE Publications. 10. McCarthy, K. (1982). An Analytical Model of the Housing Search and Mobility. London, Croom Helm Ltd. 11. Tabachnick, Barbara. G and Fidell, Linda S. (1996). Using Multivariate Statistics. New York, Harper Collins College Publisher. 國內文獻: 1. 王俊鈞 (2010),預售屋、新成屋與中古屋之偏好選擇,國立政治大學地政研究所,碩士論文 2. 王繼川、郭志剛 (2010),Logistic 迴歸模型-方法及應用,台北市,五南文化事業機構. 3. 朱芳妮、張金鶚、陳淑美 (2008),已購屋者及購屋搜尋者之購屋需求決策比較分析--兼論顯示性偏好及敘述性偏好之差異,都市計畫,第35卷第4期,pp. 339-359 4. 阮正治、江景清 (2004),台灣企業信用評分模型建置與驗證,金融聯合徵信中心信用資訊月刊,6月號 5. 周美伶 (2005),購屋者外部資訊搜尋管道選擇行為與搜尋期間之探討,住宅學報,第14卷第2期,pp. 1-25 6. 周美伶、張金鶚 (2004),購屋搜尋期間影響因素之研究,管理評論,第24卷第1期,pp. 133-150 7. 林鴻志 (1996),預售屋契約之選擇權評價與實證研究,國立中央大學企業管理學系,碩士論文 8. 邱于修 (2008),投資型購屋者機率預測模型之建立,國立政治大學地政研究所,碩士論文 9. 張明義、許惠喻 (2013),完銷力:預售屋代銷完全操盤,台北市,詹氏出版社 10. 張金鶚 (1999),房地產投資與決策分析-理論與實務,台北市,華泰文化事業股份有限公司. 11. 張金鶚 (2003),房地產投資與市場分析:理論與實務,台北市 ,華泰文化事業股份有限公司. 12. 曾明俐 (2005),兩岸預售屋交易制度之比較研究,國立屏東商業技術學院不動產經營系,碩士論文 13. 游淑滿、曾明遜 (2009),預售屋代銷制度之演進及變遷,土地問題研究季刊,第8卷第1期,pp. 29-40 14. 楊宗憲 (2003),住宅市場之產品定位分析—建商推案行為之研究,住宅學報,第12卷第2期,pp. 123-139 15. 蔡榮根 (2011),運用市場基礎模型預測營造公司財務危機之研究-以美國營造公司及台灣營建業為例,國立台灣大學土木工程學系,博士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58101 | - |
| dc.description.abstract | 購屋的決策行為近年來逐漸受到學界重視,然而國內的相關文獻多是從已購屋者,或是從購屋意願等單一角度去探討購屋考量因素、個人特徵對購屋意向的影響、搜尋方式對購屋行為的影響等,鮮有研究係針對顧客的購買機率或預測模型的概念進行探討。雖然專家可以憑藉著個人的經驗來判定來客的購買可能性,業界亦普遍認為瞭解來客的購買機率是十分重要的,但至今未有研究建立預測模型於不動產領域之來客購買機率。
不動產交易雖然涉及金額龐大,但仍屬於消費者行為的範疇中,而消費者行為乃是針對特定產品與情境所產生的,因此相異之產品所引發的購買行為就會不同,甚至是同樣的產品其消費者行為也會隨不同的使用者而異。回顧過去的相關研究結果發現,消費者者對預售屋、新成屋與中古屋這三者的購屋偏好各異,因此不同的不動產市場並不宜合併討論。又隨著研究對象的不同、研究結論亦不相同,若僅針對已購屋者的購屋意向進行研究,則可能因資料分析的侷限,而無法有效地預測未來的購屋決策。因此本研究參考一家上市不動產代銷業者之已購屋者與未購屋者資料,分析該公司從2012年到2013年於台北市所承銷之預售屋推案,藉由Logistic迴歸模型建立來客購買機率預測模型,並分別就推案之基地坪數大小、房屋坪數大小與推案坐落之行政區這三方面進行探討,最後以Leave-One-Out交互驗證法收集模型之預測結果、計算二維接受者操作特性曲線(Receiver Operating Characteristic Curve, ROC-Curve)之曲線下面積(Area Under Curve, AUC)作為預測模型的驗證。 不動產的特性多元、來客的購買行為亦十分地複雜,本研究雖然無法較全面地反映不動產購買之相關特徵,可能因此使得本研究所提出之預測模型的類R2略微偏低,但是從交互驗證的結果顯示,本研究所提之各個預測模型的排序能力多達到可以被接受的標準、亦符合專家學者們的接受水準,代表來客之購買機率預測模型於預售屋市場是具有其可行性與貢獻性的。 | zh_TW |
| dc.description.abstract | Research of house buying in the real estate industry is gradually catch people’s attention in recent years. However, most research is focusing on the preferences of final buyers, the relationship between consumer’s preferences and house properties, the impact of different searching methods in house buying and so on. Topics like purchasing probability or forecasting model in house buying are still waiting us to discover. Although experts can guess a rough percentage for each consumers through their experiences, and it generally reaches an agreement that it is very important to know the probability of a consumer to buy a house, there is no research in Taiwan to establish a forecasting model in realestate industry to predict the probability of a consumer to buy the house until now.
The transaction amount of house buying is relatively large, but it is still in the scope of consumer behavior. That is to say, different products may cause different purchasing behaviors; even the same product may lead to different results according to different consumers. When we looked back to what we could know from the historical research, we found out that consumers would change their preference procedure to different types of house, such as pre-sale, new built, and existing house for many years. Therefore, we should not put them together to discuess. On the other hand, if we only looked from one side, like buyers’ point of view only, and ignored other consumers who did not buy the house in the end, it is possible that we could not predict the future market efficiently due to the limitation of data analysis. Consider what mentioned before, this research is aimed to a listed real esate agency company, collecting both the buyers and the consumers who didn’t buy the pre-sale house form 2012 to 2013 in Taipei, and finally establishing a forecasting model by logistic regression model in pre-sale house market, which is verified through Leave-One-Out Cross-Validation method. Real estate has various characteristics, and consumer behavior is also very complicated. This research may not able to completely explain it, which may lead to low R-square for the models, but it can be proved that most models in this research is acceptable according to AUC results and meet the expectation of experts. In conclusion, the forecasting model in pre-sale house buying is feasible and has crucial contribution to Taiwan’s real estate industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:05:58Z (GMT). No. of bitstreams: 1 ntu-103-R01521706-1.pdf: 2433046 bytes, checksum: 5193bef41d294c9d2d6808126ec497f4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 II
Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究範圍與限制 3 第四節 研究流程 5 第五節 研究架構 6 第二章 文獻回顧 7 第一節 預售屋代銷制度與特性 7 第二節 Logistic迴歸模型 10 第三節 小結 11 第三章 研究理論基礎 12 第一節 研究方法 12 第二節 Logistic 迴歸模型 12 第三節 模型評估、驗證方法 15 第四節 小結 16 第四章 樣本收集與分析 18 第一節 資料說明 18 第二節 樣本基本資料分析 19 第三節 專家問卷 26 第五章 模型建立與驗證 38 第一節 模型之變數選取 38 第二節 Logistic 逐步回歸 39 第三節 預測模型介面 43 第四節 驗證結果 48 第五節 小結 69 第六章 研究成果與建議 70 第一節 結論 70 第二節 後續研究建議 72 參考文獻 74 附錄 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 預售屋 | zh_TW |
| dc.subject | 不動產分析 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | Logistic | zh_TW |
| dc.subject | Logistic Regression | en |
| dc.subject | Real Estate Analysis | en |
| dc.subject | Pre-Sale House Buying | en |
| dc.subject | Prediction Model | en |
| dc.title | 不動產預售代銷來客購買機率之預測模型建立-以台北市為例 | zh_TW |
| dc.title | Establishment of Forecasting Model for Purchase Probability in Pre-Sale Housing Agency | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃文顥,陳柏翰,林保宏 | |
| dc.subject.keyword | 不動產分析,預售屋,預測模型,Logistic, | zh_TW |
| dc.subject.keyword | Logistic Regression,Real Estate Analysis,Pre-Sale House Buying,Prediction Model, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-06-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
