Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善(Chiou-Shann Fuh)
dc.contributor.authorTing-Han Linen
dc.contributor.author林婷涵zh_TW
dc.date.accessioned2021-06-16T08:05:55Z-
dc.date.available2019-07-16
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-06-24
dc.identifier.citation[1] J. F. Cai, H. Ji, C. Q. Liu, and Z. W. Shen, “Blind Motion Deblurring from a
Single Image Using Sparse Approximation,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 104-111, 2009.
[2] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman, “Blur Kernel Estimation Using the Radon Transform,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Colorado, pp. 241-248, 2011.
[3] D. L. Donoho and M. E. Raimondo, “A Fast Wavelet Algorithm for Image Deblurring,” ANZIAM Journal, Vol. 46, pp. C29-C46, 2004.
[4] R. Fergus, “Computational Photography,” http://cs.nyu.edu/~fergus/teaching/comp_photo/, 2013.
[5] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing Camera Shake from a Single Photograph,” Proceedings of ACM SIGGRAPH, New York, Vol. 25, Issue 3, pp. 787-794, 2006.
[6] H. Hy and G. de Haan, “Low Cost Robust Blur Estimator,” Proceedings of IEEE International Conference on Image Processing, Atlanta, GA, pp. 617-620, 2006.
[7] J. Lu, E. Poon, and K. N. Plataniotis, “Restoration of Motion Blurred Images,” Proceedings of ACM Symposium on Applied Computing, Dijon, France, pp. 301-305, 2006.
[8] D. Miller and W. Scott, “Deconvolution with Inverse and Wiener Filters,” http://cnx.org/content/m13144/latest/?collection=col10380/latest, 2014.
[9] J. Miskin and D. J. C. Mackay, “Ensemble Learning for Blind Image Separation and Deconvolution,” Advances in Independent Component Analysis Perspectives in Neural Computing, pp. 123-141, 2000.
[10]Q. Pan, L. Zhang, G. Dai, and H. Zhang, “Two Denoising Methods by Wavelet Transform,” IEEE Transactions on Signal Processing, Vol. 47, No. 12, pp. 3401-3406, 2002.
[11] H. Tong, M. Li, H. Zhang, and C. Zhang, “Blur Detection for Digital Images Using Wavelet Transform,” Proceedings of IEEE International Conference on Multimedia and Expo, Copenhagenm, Denmark, Vol. 1, pp. 17-20, 2004.
[12] Wikipedia, “Wiener Deconvolution,” http://en.wikipedia.org/wiki/Wiener_Deconvolution, 2014.
[13] Wikipedia, “Richardson-Lucy Deconvolution,” http://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution, 2014.
[14] Y. Zhang and K. Hirakawa, “Blur Processing Using Double Discrete Wavelet Transform,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, pp. 1091-1098, 2013.
[15] 李雲紅, 數字圖像處理, 北京大學出版社, 北京, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58098-
dc.description.abstract本論文提出一個基於雙離散小波轉換即時重建動態模糊影像的方法。將模糊圖像透過兩次小波轉換後,能夠清楚的觀測出清晰圖像與模糊尺度並藉以修正。在本論文中,我們利用Zhang所提出的雙小波轉換 (Double Discrete Wavelet Transform) 出發,利用自相關 (Auto-correlation) 的與登山式搜尋法 (Hill Climbing Algorithm) 方式估測模糊尺度。並利用估測出的尺度資訊推測真實圖像高頻訊號。實驗結果顯示我們提出的方法與其餘方法相較下有較快的執行速度並能即時執行。 處理速度可達30張/秒,可用於即時系統中。zh_TW
dc.description.abstractMotion blur is a common phenomenon in photography. Blur may render the image useless and lead to inaccurate result. In many inspection industries, blur will cause large error and cannot be ignored. In this thesis, we propose a real-time method to improve motion blur for the medical capsule defect inspection system. We simplify the problem of dealing with motion blur with constant velocity k and moving horizontally. Based on double Haar wavelet transform, we estimate the length of blur kernel with auto-correlation and hill climbing searching algorithm. With the information of blur kernel, we are able to correct the proper coefficients in wavelet domain iteratively. We compare the deblur results and execution time of previous work and our method and achieve satisfactory results.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:05:55Z (GMT). No. of bitstreams: 1
ntu-103-R01945021-1.pdf: 1426630 bytes, checksum: b1cb449633307d5c439c3963e17eb86d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
口試委員審定書 ii
中文摘要 iii
ABSTRACT iv
Chapter 1 Introduction 1
1.1 Discrete Discrete Wavelet Transformation 3
1.2 Autocorrelation 3
1.3 Hill Climbing Algorithm 4
1.4 Deducing Wavelet Coefficients of Latent Image 4
1.5 Thesis Organization 5
Chapter 2 Related Works 6
2.1 Blur Overview 6
2.2 Deblur Method 7
2.2.1 Hardware Approach 7
2.2.2 Frequency Domain 8
2.2.3 Inverse Deconvolution 9
2.2.4 Wiener Deconvolution 10
2.2.5 Richardson Lucy Deconvolution 11
2.3 Blur Kernel Estimation 12
2.3.1 Defocus Blur Kernel 13
2.3.2 Motion Blur Kernel 14
2.3.3 Camera Shake Blur Kernel 15
2.3 Wavelet Domain Method 16
Chapter 3 Background 18
3.1 Discrete Wavelet Transformation 18
3.2 Double Discrete Wavelet Transform 20
3.3 Haar Wavelet Transform 20
Chapter 4 Methodology 22
4.1 Overview 22
4.2 DDWT Analysis on Blur Model 23
4.3 Estimate Kernel Length: Autocorrelation 27
4.4 Hill Climbing Algorithm 28
4.5 Correct the uj from vij 31
4.6 Equipment 32
Chapter 5 Experiment 33
5.1 Deblurring on a simple signal 33
5.2 Deblurring on Test Data 36
5.3 Deblurring on Real Data 37
Chapter 6 Conclusion and Future Work 43
Reference 45
dc.language.isoen
dc.subject去模糊zh_TW
dc.subject小波轉換zh_TW
dc.subject自相關zh_TW
dc.subject最佳化zh_TW
dc.subject登山法zh_TW
dc.subjectoptimizationen
dc.subjectdebluren
dc.subjectdiscrete wavelet transformen
dc.subjectauto-correlationen
dc.subjecthill climbing algorithmen
dc.title醫療器材檢測系統之實時運動圖像模糊移除zh_TW
dc.titleA Real-Time Method to Remove Motion Blur for Medical Capsule Inspection Systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖本博(Alex Liao),趙坤茂(Kun-Mao Chao),陳昭宇(Chao-Yu Chen)
dc.subject.keyword去模糊,小波轉換,自相關,最佳化,登山法,zh_TW
dc.subject.keyworddeblur,discrete wavelet transform,auto-correlation,optimization,hill climbing algorithm,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2014-06-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved