Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民
dc.contributor.authorChi-Hsuan Chenen
dc.contributor.author陳棋炫zh_TW
dc.date.accessioned2021-06-16T08:05:42Z-
dc.date.available2015-07-09
dc.date.copyright2014-07-09
dc.date.issued2014
dc.date.submitted2014-06-25
dc.identifier.citationAbers, G., and R. McCaffrey (1988), Active deformation in the New Guinea fold-and-thrust belt: Seismological evidence for strike-slip faulting and basement-involved thrusting. J. Geophys. Res., 93(B11), 13332–13354.
Bak, P., and C. Tang (1989), Earthquakes as a self-organized critical phenomenon. J. of Geophys. Res. 94(B11): 15635-15637.
Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes. Physical Rev. Lett. 88(178501): 1-4.
Beyssac, O., M. Simoes, J.P. Avouac, K. A. Farley, Y. G. Chen, Y.C. Chan, and B. Goffe (2007), Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26 (TC6001), 10.1029/2006TC002064.
Biq, C. C. (1989), The Yushan-Hsuehshan Megashear zone in Taiwan. Proc. Geol. Soc. China, 20, 61-70.
Brocher, T. M. (2005), Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95 (6), 2081–2092.
Brown, D., J. Alvarez-Marron, M. Schimmel, Y. M. Wu, and G. Camanni (2012), The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics, v. 31, TC5013, doi:10.1029/2012TC003156.
Camanni, G., C. H. Chen, D. Brown, J. Alvarez-Marron, Y. M. Wu, H. A. Chen, H. H. Huang, H. T. Chu, M. M. Chen, and C. H. Chang (2013a), Basin inversion in central Taiwan and its importance for seismic hazard. Geology, doi: 10.1130/G35102.1.
Camanni, G., D. Brown, J. Alvarez-Marron, Y. M. Wu, and H. A. Chen (2013b), The Shuilikeng fault in the central Taiwan mountain belt. Geol. Soc. London J., doi:10.1144/jgs2013-014.
Carena, S., J. Suppe, and H. Kao (2002), Active detachment of Taiwan illuminated by small earth- quakes and its control of first-order topography. Geology, v. 30, 935–938.
Central Geological Survey (2010), Active fault map of Taiwan, MOEA, Taipei.
Chakravarti, Laha, Roy (1967), Handbook of methods of applied statistics, Volume I, John Wiley and Sons. 392-394.
Chan, C. H., and Y. M. Wu (2012), A seismicity burst following the 2010 M6.4 Jiashian earthquake - implication for short-term seismic hazards in southern Taiwan. J. Asian Earth Sci., 59, 231-239, doi:10.1016/j.jseaes.2012.08.011.
Chang, L. S. (1971), A biostratigraphic study of the so-called slate formation in Taiwan based on smaller Foraminifera: I. The E-W cross-mountain highway. Proc. Geol. Soc. China, 14, 45-61.
Chang, L. S. (1976), The Lushanian Stage in the Central Range of Taiwan and its fauna. In Takaganagi, Y. & Saito, T. (eds), Progress in Micropaleontology, Micropaleont. Press New York, 27-35.
Chao, W. A., L. Zhao, and Y. M. Wu (2011), Centroid fault-plane inversion in three-dimensional velocity structure using strong-motion records. Bull. Seismol. Soc. Am., 3, 1330-1340, doi: 10.1785/0120100245.
Chemenda, A. I., R. K. Yang, J. F. Stephan, E. A. Konstantnovskaya, and G. M. Ivanov (2001), New results from physical modelling of arc-continent col- lision in Taiwan: evolutionary model. Tectonophysics, 333, 159–178.
Chen, C. H. (1976), The stratigraphy of the Meichi Sandstone in central Taiwan. Proc. Geol. Soc. China, 19, 71-77.
Chen, C. H. (1977), Some stratigraphic problems of the Hsuehshan Range of Taiwan. Proc. Geol. Soc. China, 20: 61-70.
Chen, C. H. (1979), Geology of the east-west cross-island highway in central Taiwan. Mem. Geol. Soc. China, 3: 219-236.
Chen, C. H. (1984), Determination of lower greenschist facies boundary by K-mica-chlorite crystallinity in the Central Range. Taiwan. Proc. Geol. Soc. China, 27: 41-53.
Chen, C. H., H. T. Chu, H. G. Liou, and W. G. Ernst (1983), Explanatory notes for the metamorphic facies map of Taiwan. Spec. Publ., Cent. Geol. Surv., 2, 32p.
Chen, M. M., N. T. Yu, H. T. Chu, K. S. Shea, and Y. C. Hsieh (2009), Larger foraminifera in the so-called “Meichi Sandstone” of Wujie area, southern Hsuehshan Range. Spec. Publ. 22, 227–242, Cent. Geol. Surv., Taipei.
Chen, M. M., Y. C. Hsieh, N. T. Yu, H. T. Chu, and C. H. Chen (2011), Reconstruction and correlation of the lithostratigraphic units of the Southern Hsuehshan Range-based on newly discovered fossil evidence. Spec. Publ. 25, 89–109, Cent. Geol. Surv., Taipei.
Chen, W. S., B. S. Huang, Y. G. Chen, Y. H. Lee, C. N. Yang, C. H. Lo, H. C. Cheng, Q. C. Sung, N. W. Huang, C. C. Lin, S. H. Sung, and Lee, K. J. (2001), 1999 Chi-Chi earthquake: A case study on the role of thrust-ramp structures for generating earthquakes. Bull. Seismol. Soc. Am., 91, 986–994.
Chen, Y. L. (1995), A study of 3-D velocity structure of the crust and the subduction zone in the Taiwan region. Master Thesis, National Central University, Jhongli, Taiwan, 172 pp. (in Chinese)
Cheng, S. N., T. B. Wang, T. W. Lin, and C. H. Jiang (2010), Establishment of Taiwan earthquake catalog. Seismol. Technol. Rep. of Central Weather Bureau. 54: 575-605.
Cheng, W. B., (2009) Tomographic imaging of the convergent zone in eastern Taiwan – a subducting forearc sliver revealed? Tectonophysics, 466, 170-183. (SCI)
Ching, K. E., K. M. Johnson, R. J. Rau, R. Y. Chuang, L. C. Kuo, and P. L. Leu (2011), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth Planet. Sci. Lett., 301, 78-86.
Chiu, H. T. (1975), Miocene stratigraphy and its relation to the Palaeogene rocks in west-central Taiwan. Pet. Geol. Taiwan, 12, 51-80.
Chou, J. T. (1975), A sedimentologic study of the Miocene Pachangchi sandstone in the Chiayi region, western Taiwan. Pet. Geol. Taiwan, v. 12, p. 81–96.
Christensen, N. I. (1996), Poisson’s ratio and crustal seismology. J. Geophys. Res. 101 (B2), 3139–3156.
Chuang, R. Y., K. M. Johnson, Y. M. Wu, K. E. Ching, and L. C. Kuo (2013), A midcrustal rampfault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series. Geophys. Res. Lett., v. 40, 1–5.
Chung, S. L., B. M. Jahn, S. J. Chen, T. Lee ,and C. H. Chen (1995), Miocene basalts in northwestern Taiwan: evidence for EM-type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta, 59: 549-555.
Clark, M. B., D. M. Fisher, C. Y. Lu ,and C. H. Chen (1993), Kinematic analyses of the Hsuehshan Range, Taiwan: a large-scale pop-up structure. Tectonics, 1, 205-217.
Corral, A (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys. Rev. Lett. 92: 108501.
Corral, A. (2006), Dependence of earthquake recurrence times and independence of magnitudes on seismicity history. Tectonophys. 424: 177-193.
Crespi, J. M., Y. C. Chan, and M. S. Swaim (1996), Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24, 247–250.
Dahlen, F. A., J. Suppe, and D. Davis (1984), Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive coulomb theory. J. Geophys. Res., v. 89, 10087– 10101.
Davis, D., J. Suppe, and F. A. Dahlen (1983), Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res., v. 88, 1153–1172.
Davis, S. D., and C. Frohlich (1991), Single-link cluster analysis of earthquake aftershocks: decay laws and regional variations. J. Geophys. Res. 96: 6336–6350.
Dieterich, J. H. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99(B2): 2,601–2,618.
Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852.
Eberhart-Phillips, D. (1990), Three-dimensional P and S velocity structure in the Coalinga region, California. J. Geophys. Res., 95(B10), 15,343-15,363.
Ernst, W.G. (1983), Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. J. Metamorp. Geol., 1, 305-329
Field, E. H. (2007), Overview of the working group for the development of regional earthquake likelihood models (RELM). Seismol. Res. Lett. 78(1): 7-16.
Fisher, D. M., C. Y. Lu, and H. T. Chu (2002), Taiwan slate belt: insights into the ductile interior of an arc–continent collision. Geol. Soc. Am. Spec. Paper 358, 93–106.
Fisher, D. M., S. D. Willett, E. C. Yeh, and M. B. Clark (2007), Cleavage fronts and fans as reflections of orogen stress and kinematics in Taiwan. Geology 35 (1), 65–68.
Fuller, C. W., S. D. Willett, D. Fisher, and C. Y Lu. (2006), A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425, 1–24.
Gourley, J. R., T. Byrne, Y. C. Chan, F. Wu, and R. J. Rau (2007), Fault geometries illuminated from seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern Central Range. Tectonophysics, 445, 168–185, doi:10.1016/j.tecto.2007.08.013.
Grand, S. P. (1987), Tomographic inversion for shear velocity beneath the North American plate. J. Geophys. Res., 92(B13), 14,065–14,090.
Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34: 185– 188.
Hagiwara, Y. (1974), Probability of earthquake occurrence as obtained from Weibull distribution analysis of crustal strain. Tectonophys. 23: 313-318.
Hasumi, T., C. C. Chen, T. Akimoto, and Y. Aizawa (2010), The Weibull-log Weibull transition of interoccurrence time for synthetic and natural earthquakes. Tectonophys. 485: 9-16.
Hasumi, T., T. Akimoto, and Y. Aizawa (2009a), The Weibull-log Weibull transition of the interoccurrence time statistics in the two-dimensional Burridge-Knopoff Earthquake model. Physica A. 388: 483-490.
Hasumi, T., T. Akimoto, and Y. Aizawa (2009b), The Weibull-log Weibull distribution for interoccurrence times of earthquakes. Physica A. 388: 491-498.
Ho, C. S. (1975), An introduction to the Geology of Taiwan; explanatory text of the geologic map of Taiwan, Ministry of Economic Affairs, Taipei, 153 pp.
Ho, C. S. (1988), An introduction to the geology of Taiwan—Explanatory text of the geologic map 0f Taiwan, 153pp, MOEA, Taipei.
Ho, C. S., (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16.
Hsu, M. T. (1961), Seismicity in Taiwan (Formosa). Bull. Earthq. Res. Int., Tokyo Univ., 29: 831-847.
Hsu, S. K., and J. C. Sibuet (1995), Is Taiwan the result of arc—continent or arc—arc collision? Earth planet. Sci. Lett., 136, 315–324.
Huang, B. S., C. Y. Wang, D. Okaya, S. J. Lee, Y.C. Lai, F. Wu, W.T. Liang, and W.G. Huang (2013), Multiple diving waves and steep velocity gradients in the western Taiwan coastal plain: an investigation based on the TAIGER experiment. Bull. Seismol. Soc. Am. 103 (2A), 925–935.
Huang, C. Y., W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C. W. Lin, and K. Y. Xia (1997), Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281, 31–51.
Huang, H. H., Y. M. Wu, C. H. Chang, S. J. Lee, T. M. Chang, and H. H. Hsieh (2014), Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth Planet. Sci. Lett., 392, 177-191.
Huang, H. H., Y. M. Wu, T. L. Lin, W. A. Chao, J. B. H. Shyu, C. H. Chan, and C. H. Chang (2011), The preliminary study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan earthquake sequence. Terr. Atmos. Ocean. Sci., 22, 283-290, doi: 10.3319/TAO.2010.12.13.01(T).
Huang, J. Y. (2009), Using microtremor measurement to study the site effect in Taiwan area. Master Thesis, National Central University, Jhongli, Taiwan, 240 pp. (in Chinese).
Jackson, D. D., and Y. Y. Kagan (1999), Testable earthquake forecasts for 1999. Seismol. Res. Lett. 70(4): 393-403.
Jacob, K. H. (1984), Estimates of long-term probabilities for future great earthquakes in the Aleutians. Geophys. Res. Letts. 11: 295-298.
Jahn, B. M., F. Martineau, J. J. Peucat, J. Cornichet (1986), Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance. Tectonophysics 125, 103–104.
Jahn, B. M., J. G. Liou, H. Nagasawa (1981), High-pressure metamorphic rocks of Taiwan: REE geochemistry, Rb–Sr ages and tectonic implications. Mem. Geol. Soc. China, 4, 497–520.
Jahn, B. M., W. R. Chi, and T. F. Yui (1992), A Late Permian formation of Taiwan (marbles from Chia-Li well No.1): Pb-Pb isochron and Sr isotopic evidence, and its regional geological significance. J. Geol. Soc. China, 35, 193-218.
Jordan, T. H. (2006), Earthquake predictability, brick by brick. Seismol. Res. Lett., 77(1): 3–6.
Kagan, Y. Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs. J. Geophys. Res., 86: 2853-2862.
Kagan, Y. Y., and L. Knopoff (1987), Statistical short-term earthquake prediction. Science, 236(4808): 1563–1567
Kao, H., and W. P. Chen (2000), The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan. Science, 288, 2346–2349.
Kao, H., P. R. Jian, K. F. Ma, B. S. Huang, and C. C. Liu (1998), Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision. Geophys. Res. Lett. 25 (19), 3619–3622.
Knopoff, L., Y. Kagan, and R. Knopoff (1982), b-values for fore- and aftershocks in real and simulated earthquake sequences. Bull. Seismol. Soc. Am., 72: 1663–1676.
Koketsu, K., Sekine, S., 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Ceophys. J. Int., 132, 339-346.
Kuo-Chen, H., F. T. Wu, and S. W. Roecker (2012a), Three-dimensional P velocity struc- tures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. 117, B06306.
Kuo-Chen, H., F. T. Wu, D. M. Jenkins, J. Mechie, S. W. Roecker, C. Y. Wang, and B. S. Huang (2012b), Seismic evidence for the a–b quartz transition beneath Taiwan from Vp/Vs tomography. Geophys. Res. Lett. 39, L22302.
Kuochen, H., Y. M. Wu, C. H. Chang, J. C. Hu, and W. S. Chen (2004), Relocation of the Eastern Taiwan Earthquakes and Its Tectonic Implications. Terr. Atmos. Ocean. Sci., 15, 647-666.
Kuochen, H., Y. M. Wu, Y. G. Chen, and R. Y. Chen (2007), 2003 Mw6.8 Chengkung earthquake and its associated seismogenic structures. J. Asian Earth. Sci., 31, 332-339.
Lacombe, O., and F. Mouthereau (2002), Basement-involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees). Tectonics, 21(4), 1030.
Lee, J. C., J. Angelier, and H. T. Chu (1997), Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: The Lishan fault. Tectonophysics, 274, 97–115 .
Lin, C. H. (1996), Crustal structures estimated from arrival differerces of the first P-waves in Taiwan. J. Geol. Soc. China. 39: 1-12.
Lin, C. H. (2000), Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324, 3, 189-201.
Lin, C. H. (2002), Active continental subduction and exhumation: the Taiwan orogeny. Terra Nova. Vol. 14, No. 4, 281-287.
Lin, C. H., Y. H. Yeh, H. Y. Yen, K. C. Chen, B. S. Huang, S. W. Roecker, and J. M. Chiu (1998), Three-dimensional elastic velocity structure of the Hualien region of Taiwan – evidence of active crustal exhumation. Tectonics, 17, 89–103.
Lin, C. H., and Ando, M. (2004), Seismological evidence of simultaneous mountain-building and crust-thickening from the 1999 Taiwan Chi-Chi earthquake (Mw=7.6), Earth, Planets and Space, Vol. 56, 163-167.
Lin, C. H. (2007), Tomographic image of crustal structures across the Chelungpu fault: Is the seismogenic layer structure- or depth-dependent? Tectonophysics, doi:10.1016/j.teco.2007.1.022.
Liou, J. G. (1981), Recent high CO2 activity and Cenozoic progressive metamorphism. Mem. Geol. Soc. China, 4: 551-581.
Liu, S. K., and Chen, J.C. (1991), Geochemistry of Taiwan’s north, west-central, and offshore Cenozoic basalts. Spec. Publ., Cent. Geol. Surv. v. 5, p. 15–37 (in Chinese with English abstract).
Liu, T. K. (1988), Fission track dating of the Hsuehshan Range: Thermal record due to arc-continent collision in Taiwan. Acta Geol. Taiwanica, 26, 279-290.
Liu, T. K., S. Hsieh, Y. G. Chen, and W. S. Chen (2001), Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth Planet. Sci. Lett., 186, 45-56.
Lu, C. Y., and J. Malavieille (1994), Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modeling. Earth Planet. Sci. Lett., 121(3–4), 477-494
Lu, C. Y., and K. J. Hsu (1992), Tectonic evolution of the Taiwan mountain belt. Petrol. Geol. of Taiwan, 27, 21–46.
Lu, C. Y., S. B. Yu, and H. T. Chu (1998), Neotectonics of the Taiwan Mountain Belt. in Flower et al., (eds) Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Geodynamic series, v. 27, p. 301-315.
McIntosh, K., Y. Nakamura, T. K. Wang, R. C. Shih, A. Chen, and C. S. Liu (2005), Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401, 23–54.
Mouthereau, F., and O. Lacombe (2006), Inversion of the Paleogene Chinese continental margin and thick-skinned deformation in the Western Foreland of Taiwan. J. Struct. Geol., 28, 1977–1993.
Ogata, Y. (1988), Statistical models for earthquake occurrence and residual analysis for point processes. J. Am. Stat. Assoc., 83: 9-27.
Pacheco, J. F., C. H. Scholz, and L. R. Sykes (1992), Changes in frequency-size relationship from small to large earthquakes. Nature. 355: 71-73.
Press, F. (1966), Seismic velocities. In: Clark, S.P. (Ed.), Handbook of Physical Constants. Geological Society of America Memoir. Geol. Soc. of Am., pp. 196–218
Purcaru, G. (1975), A new magmtude-frequency relation for earthquakes and a classification of relation types. Geophys. J. R. Astr. Soc. 42: 61-79.
Rhoades, D. A., and M. C. Gerstenberger (2009), Mixture models for improved short-term earthquake forecasting. Bull. Seismol. Soc. Am., 99(2A): 636–646.
Rikitake, T. (1974), Probability of an earthquake occurrence as estimated from crustal strain. Tectonophys. 23: 299-312.
Saichev, A., and D. Sornette (2006), Universal Distribution of Inter-Earthquake Times Explained, Phys. Rev. Letts. 97: 078501.
Sato, K., C. Y. Meng, J. Suyama, S. Kurihara, S. Kamata, H. Obayashi, E. Inoue, and P. T. Hsiao (1970), Reports s on the seismic refraction survey on the land in western part on the seismic refraction survey on the land in western part of Taiwan. CCOP Tech. Bull., 2, 45-58.
Savage, J. C. (1992), The uncertainty in earthquake conditional probabilities. Geophys Res. Letts. 19: 709-712.
Schwartz, D. P., and K. J. Coppersmith (1984), Fault behavior and characteristic earthquakes-Examples from the Wasatch and San Andreas fault zones. J. of Geophys. Res. 89: 5681-5698.
Selander, J., M. Oskin, C. Ormukov, and K. Abdrakhmatov (2012). Inherited strike-slip faults as an origin for basement-cored uplifts: Example of the Kungey and Zailiskey ranges, northern Tian Shan. Tectonics 31, doi: 10.1029/2011TC003002. issn: 0278-7407.
Shaw, C. L. (1996), Stratigraphic correlation and isopach maps of the Western Taiwan Basin. Terr. Atmos. Oceanic Sci., v. 7, 333–360.
Shea, K. S., C. S. Horng, M. M. Chen, and N. T. Yu (2011), Fossil study of the Chiayang Formation, the middle member of the Meichi Sandstone and the base of the Lushan Formation in central Taiwan: age constraints on the formations on the eastern flank of the Southern Hsuehshan Range. Spec. Publ. 25, 133–166, Cent. Geol. Surv., Taipei.
Shimazaki, K., and T. Nakata ( 1980), Time-predictable recurrence model for large earthquakes. Geophys. Res. Letts. 7: 279-282.
Shin, T. C. (1993), Progress summary of the Taiwan strong motion instrumentation program. In: Proceeding of Symposium on Taiwan Strong Motion Instrumenta- tion Program. Cent. Weather Bureau, Taipei, Taiwan, 1–10 (in Chinese).
Shin, T. C., Y. B. Tsai, Y. T. Yeh, C. C. Liu, and Y.M. Wu (2003), Strong motion instrumentation programs in Taiwan. In: Lee, W.H.K., Kanamori, H., Jennings, P.C. (Eds.), Handbook of Earthquake and Engineering Seismology. Academic Press, New York, 1057–1602.
Shyu, J. B. H., K. Sieh, and Y. G. Chen (2005), Tandem suturing and disarticulation of the Taiwan orogeny revealed by its neotectonic elements. Earth planet. Sci. Lett., 233(1-2), 167-177.
Sibuet, J. C., and S. K. Hsu (1997), Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274, pages 221–251
Simoes, M., J. P. Avouac, O. Beyssac, B. Goffe, K.A. Farley, and Y. G. Chen (2007), Mountain building in Taiwan: a thermokinematic model. J. Geophys. Res. 112 (B11405). doi:10.1029/2006JB004824.
Simoes, M., O. Beyssac, and Y.G. Chen (2012), Late Cenozoic metamorphism and mountain building in Taiwan: A review. J. Asian Earth Sci., 46, 92–119.
Smith, A. D., and C. Lewis (2007) Geochemistry of Metabasalts and Associated Metasedimentary Rocks from the Lushan Formation of the Upthrust Slate Belt, South-Central Taiwan. Int. Geol. Rev., 49, 1, 1-13.
Snedecor, G. W., and W. G. Cochran (1989), Statistical methods, eighth edition, Iowa State University Press.
Stephens, M. A. (1974), EDF statistics for goodness of fit and some comparisons, J. of the Am. Statis. Assoc. 69: 730-737.
Suppe, J. (1980), A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China, 23, 46–55.
Suppe, J. (1981), Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67–89.
Suppe, J. (2007), Absolute fault and crustal strength from wedge tapers. Geology, 35, 1127–1130
Suppe, J. (1987), The active Taiwan mountain belt, in Schaer, J.P., and Rodgers, J., eds., The anatomy of mountain ranges. Princeton, New Jersey, Princeton University Press, p. 277–293.
Talbi, A., and F. Yamazaki (2009), Sensitivity analysis of the parameters of earthquake recurrence time power law scaling. J. of Seismo. 13 (1): 53-72.
Tang, C. C., L. Zhu, C. H. Chen, and T. L. Teng (2011), Significant crustal structural variation across the Chaochou Fault, southern Taiwan: New tectonic implications for convergent plate boundary. Journal of Asian Earth Sciences, 41(6), 564-570.
Teng, L.S. (1990), Geotectonic evolution of late Cenozoic arc–continent collision in Taiwan. Tectonophysics 183, 57–76.
Teng, L.S., Y. Wang, C. H. Tang, T. C. Huang, M. S. Yu., and A. Ke (1991), Tectonic aspects of the Paleogene deposition basin of northern Taiwan. Proc. Geol. Soc. China, 34, 4, 313-336
Teng, L.S. (1992), Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petrol. Geol. of Taiwan, 27, 1-19.

Teng, L. S., and A. T. Lin (2004), Cenozoic tectonics of the China continental margin; Insights from Taiwan, in Aspects of the Tectonic Evolution of China, edited by J. Malpas et al. Geol. Soc. Spec. Publ., 226, 313–332.
Thurber, C. H. (1983), Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 88(B10), 8226-8236.
Thurber, C. H. (1993), Local earthquake tomography: velocities and Vp/Vs-theory. In H. M. Iyer and K. Hirahara (Eds.), Seismic Tomography, p. 563-583, London: Chapman and Hall.
Thurber, C., and D. Eberhart-Phillips (1999), Local earthquake tomography with flexible gridding. Comp. Geosci., 25, 809-818.
Tillman, K., and T. Byrne (1995), Kinematics analysis of the Taiwan slate belt. Tectonic, 14, 2; 322-341.
Tsao, S. J. (1996), The geological significance of illite critallinity zircon fission-track ages and K–Ar ages of metasedimentary rocks of the Central Range. National Taiwan University, Taipei, ROC.
Um, J. and C. Thurber (1987), A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 77 (3), 972–986.
Ustaszewski, K., Y. M. Wu, J. Suppe, H. H. Huang, C. H. Chang, and S. Carena (2012), Crust-mantle boundaries in the Taiwan - Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics, 578, 31-49.
Utsu, T. (1972), Large earthquakes near Hokkaido and the expectancy of the occurrence of a large earthquake of Nemuro: Report of the Coordinating Comm. for Earthq. Predict. 7: 7-13.
Utsu, T. (1974), A three-parameter formula for magmtude distribution of earthquake. J. Phys. Earth 22: 71-85.
Utsu, T. (1984), Estimation of parameters for recurrence models of earthquakes. Bull. of the Earthq. Res. Inst. Univers. of Tokyo. 59: 53-66.
Utsu, T. (2002), Statistical feature of seismicity. In: Lee, W. H. K., H. Kanamori,P. C. Jennings, and C. Kisslinger, (Eds). Int. Handb. of Earthq. & Eng. Seismol. 81A. Acdemic Press: 719-732.
Utsu, T., Y. Ogata, and S. Matsuura (1995), The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43: 1-33.
Vassallo, R., J. F. Ritz, R. Braucher, M. Jolivet, S. Carretier, C. Larroque, A. Chauvet, C. Sue, M. Todbileg, D. Bourles, A. Arzhannikova, and S. Arzhannikov (2007), Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia. Tectonics, 26, TC5013, doi:10.1029/ 2006TC002081.
Wang Lee, C., Y. Wang, T. P. Yen, and C. H. Lo (1982), Polymetamorphism in some gneiss bodies, Hoping-Chipan area, Hualien, eastern Taiwan. Acta Geol. Taiwan., 21, 122-139.
Wang, C. Y., and T. C. Shin (1998), Illustrating 100 years of Taiwan Seismicity. Terr. Atmos. Ocean. Sci. 9: 589-614.
Wang, J. H. (1989), The Taiwan Telemetered Seismographic Network. Phys. Earth Planet. Inter. 58: 9–18.
Wang, J. P., C. H. Chan, Y. M. Wu (2011), The distribution of annual maximum earthquake magnitude around Taiwan and its application in the estimation of catastrophic earthquake recurrence probability. Nat. Hazard. doi: 10.1007/s11069-011-9776-x.
Wessel, P., and W. H. F. Smith (1998), New improved version of Generic Mapping Tools released, Eos Trans. AGU, 79, 579, doi:10.1029/98EO00426.
Wiemer, S. (2001), A software package to analyse seismicity: ZMAP. Seismol. Res. Lett. 72: 373-382.
Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seism. Soc. Am. 90(4): 859-869.
Wintsch, R. P., H. J. Yang, X. H. Li, and K. A. Tung (2011), Geochronologic evidence for a cold arc–continent collision: the Taiwan orogeny. Lithos 125 (1–2), 236–248.
Wu, H. C., H. Y. Yang, and T. F. Chou (1983), Petrography of the igneous rocks beneath the Chiayi coastal plain, central western Taiwan. Petrol. Geol. of Taiwan, v. 19, p.77–91
Wu, Y. M., T. C. Shin, and C. H. Chang (2001), Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake. Bull. Seismol. Soc. Am., 91, 1218-1228, doi: 10.1785/0120000734.
Wu, Y. M., T. L. Teng, T. C. Shin, and N. C. Hsiao (2003a), Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bull. Seism. Soc. Am., 93, 386-396.
Wu, Y. M., C. H. Chang, N. C. Hsiao, and F. T. Wu (2003b), Relocation of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections. Terr. Atmos. Ocean. Sci., 14, 421-430
Wu, Y. M., Y. G. Chen, T. C. Shin, H. Kuochen, C. S. Hou, C. H. Chang, C. F. Wu, and T. L. Teng (2006a), Coseismic vs. interseismic ground deformations, faults rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophys. Res. Lett., 33, L02312.
Wu, Y. M., Y. G. Chen, C. H. Chang, L. H. Chung, T. L. Teng, F. T. Wu, and C. F. Wu (2006b), Seismogenic structure in a tectonic suture zone: with new constraints from 2006 Mw6.1 Taitung earthquake. Geophys. Res. Lett., 33, L22305.
Wu, Y. M., and L. Y. Chiao (2006), Seismic quiescence before the 1999 Chi-Chi, Taiwan Mw7.6 earthquake. Bull. Seism. Soc. Am. 96: 321–327.
Wu, Y. M., and C. C. Chen (2007), Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake. Tectonophys. 429: 125–132.
Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac (2007), Seismic tomography of Taiwan: Improved constraints from a dense net- work of strong motion stations. J. Geophys. Res. 112, B08312.
Wu, Y. M., C. C. Chen, L. Zhao, and C. H. Chang (2008a), Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake. Tectonophys. 457: 177-182.
Wu, Y. M., C. H. Chang, L. Zhao, T. L. Teng, and M. Nakamura (2008b), A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bull. Seism. Soc. Am. 98: 1471–1481.
Wu, Y. M., L. Zhao, C. H. Chang, and Y. J. Hsu (2008c), Focal-mechanism determination in Taiwan by genetic algorithm. Bull. Seismol. Soc. Am., 98, 651-661, doi: 10.1785/0120070115.
Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu (2009), Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophys. J. Int. 178, 1042–1054.
Yang, K. M., S. T. Huang, J. C. Wu, H. H. Ting, and W. W. Mei (2006), Review and new insights on foreland tectonics in western Taiwan. Int. Geol. Rev., v. 48, p. 910–941.
Yeh, Y. H., and Y. B. Tsai (1981), Crustal structures of central Taiwan from inversion of P-wave arrival times. Bull. Inst. Earth Sci. 1: 83-102.
Yue, L. F., J. Suppe, and J. H. Hung (2005), Structural geology of a classic thrust belt earth- quake: The 1999 Chi-Chi earthquake Taiwan (Mw=7.6). J. Struct. Geol., v. 27, p. 2058–2083.
Zelt, C. A. (1998), Lateral velocity resolution from three-dimensional seismic refraction data. Geophys. J. Int. 135, 1101–1112.
Zhou, D., H. S. Yu, H. H. Xu, X. B. Shi, and Y.W. Chou (2003), Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan. Tectonophysics, 374, 115-134.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58085-
dc.description.abstract經濟部中央地質調查所於2010年公布之臺灣陸上33條活動斷層,集中在西部麓山帶、西部平原及花東縱谷區;相對中央山脈地區,由於受到調查能量及區域複雜程度之限制,活動構造不易從地表直接觀察到。然而,不可忽視的在過去一個世紀以來,島內發生的地震紀錄顯示,超過5成數量規模大於6.0的地震,發生在中央山脈地區,這也促使本論文利用地震地質學,探討與釐清內麓山帶地表地質構造與地下地震構造之關係,以及規模6.0以上之可能致災地震在未來可能之發生機率。地震地質學為利用地質科學之理論和分法來研究地震發生之成因與行為,其主要研究之範疇有地震構造、活動斷層、古地震研究、誘發地震及地震災害等研究,尤其是第四紀以來之地殼新期構造運動。本論文聚焦在地震構造及地震統計,探討臺灣中部及南部地區,於2010年~2013年6月,在中央山脈地質區發生4次規模大於6.0以上之震源參數及可能之地震成因。研究結果顯示此4次分別發生在雪山山脈和脊梁山脈規模6.0以上之地震,與地下隆起之高速構造沿著斷層系統上拱有關,並可延伸到中至下部地殼,且震源參數可能對應到重要地質意義之界限斷層。論文最後復以長期地震發生機率之預測,藉以提醒在未調查清楚的活動地質構造環境下,應隨時做好地震防災之準備。
論文主要由3大部分所組成,第一部分為重新檢視2012年屏東霧臺地震之震源參數,其為繼2010年3月甲仙發生規模6.0以上的地震再一次撼動南臺灣,甲仙地震之斷層面解,並無對應到相近的地表構造斷層且未在地表造成明顯之破裂,以致當時推論為地下盲斷層系統,2010年又陸續於附近發生規模接近6.0的桃源地震及震源機制相仿的2012年霧臺地震,提供研究此區複雜地震成因之良機。藉由利用不同定位方法所得之地震深度顯示霧臺地震之深度可能深超過30公里,地殼變形的行為包含更厚的地殼範圍,顯示斷層系統可能延到更深。
第二部分主要探討2013年3月及6月兩次規模大於6.0之南投地震成因。所採用之方法為地震層析速度構造,藉由速度構造之異常可以進一步討論其可能代表物質及地下不均質構造。前人研究在解算速度構造通常都是直接逆推Vp或聯合逆推Vp 與 Vp/Vs,主因為S波到時通常較難判斷導致於往後演算有較多誤差,然而若能求得清楚之Vs,在配合Vp/Vs判釋物質材料會較為敏銳。因此,本研究在保留足夠逆推數據的前提下,透過一些嚴格條件之篩選,使得P波到時及S波到時有同樣之射線包覆率及資料品質。逆推結果顯示在雪山山脈區呈現南北連續之冒起構造(pop-up structure),速度抬升區之東翼被梨山斷層所侷限住,顯示雪山山脈掘升(exhumation)的過程可能受梨山斷層所控制。梨山斷層往東有另一高速隆起區位於脊梁山脈與大南澳變質雜岩底下,速度構造之性質與雪山山脈下之性質相仿,因此推論者兩區之造山運動除了時間上有先後順序外,其異常速度構造之形成機制可能相似。
第三部分為進行臺灣地區地震發生機率統計。過去一個世紀以來,中央氣象局累積收集非常龐大數量之地震目錄,這對於統計分析是一大好處;然而在規模中型(6.0)以上之地震,所累積之記錄時間仍然不足,過去前人研究顯示不管小規模或中、大規模的地震,其地震間隔發生時間存在統一的分布曲線,本部分嘗試利用此一特點,先推求臺灣地區較小規模之地震間隔發生時間之分布模型,再利用分布曲線對應參數應用到中、大規模地震,求取未來地震在某段時間間隔內可能發生之機率。研究結果顯示,規模6.0以上,從2011年起算,1年內之發生機率超過70%;規模6.5以上1年內發生機率為33%;規模7.0以上地震,1年內發生率為15%,10年內發生率為78%。
zh_TW
dc.description.abstractThere are 33 active faults announced by Central Geological Survey, Taiwan (CGS, 2010), and they almost located in the Western Foothill, Western Coastal Plain, and Eastern Rift Valley area. Due to the limitation of advanced surveys and the complexity in mountain area, the evidences of active faults never easy to discovered, however, over 50 % of ML ≥ 6.0 inland earthquakes in the past century occurred in the Central Range area of Taiwan. To better understand the seismogenesis, we attempted to distinct the relationships between surface structure and seismological structure by earthquake geology in this dissertation. Earthquake geology is the study of the causality, source parameters, deformation feature, and recurrence of earthquakes within the crustal scale. In this study, we found the four ML ≥ 6.0 earthquakes from 2010 to June 2013 in Central Range correlated with the uplift of velocity structures. The seismic clusters extend to mid-lower crust represents the crust is undergoing thick-skinned deformation in Central Taiwan. Furthermore, a statistic study was also carried out to calculate the recurrence probability of ML ≥ 6.0 earthquakes. We ultimately summarized the achievements for respective projects, and their important for seismic hazard assessment.
The dissertation mainly consists of three projects. In the first, we re-examined source parameters of the 2012 Wutai earthquake in southern Taiwan, which is essential for earthquake geology study. After the 2010 ML 6.4 Jiasian earthquake caused extensive damage in southern Taiwan, deep, complicated structures were revealed. This earthquake provided us an opportunity to further investigate related tectonic issues and hazard mitigation. Together with recent relative large earthquakes (e.g. 2010 Jiasian and 2010 Taoyuan earthquakes) in southern Taiwan, we also delineated a picture of their tectonic environment. The more deeply relocated Wutai earthquake implied the involvement of the lower crust and that the blind thrust system in this region could go deeper.
In the second project, we studied the velocity structures of Central Taiwan by using the newly developed joint-inversion algorithm and seismological data. Although the previous tomographic results in Taiwan have been compatible with the tectonic interpretation, seldom local scale structures are discussed in advanced. Most tomography were P-wave velocities, or with Vp/Vs ratio jointly, but few for S-wave velocities. Therefore, we attempted to provide a new velocity structure of Vp, Vs, and Vp/Vs. The results show that seismicity is bounded by the pop-up velocity structure. The spatial geometry of Lishan Fault in the crustal scale was first revealed by the retrieved tomography. A high velocity body is exhumed to the west under the eastern Hsuehshan Range and right stop by the Lishan Fault on the east, demonstrating that the orogenic thrust system developed in central Taiwan is controlled by the Lishan Fault.
In the third project, we further expand the long-term forecasting model in Taiwan area. The time intervals between a series of events (the inter-occurrence periods) are stationary with an identical temporal distribution after an elimination of aftershocks. Based on the goodness-of-fit testing between a few models and observation, we suggested the use of the Gamma distribution in modeling this variable, earthquake inter-occurrence periods, for the study region. Accordingly, unified relationship was constructed, and statistical limitations of sparse sampling for devastating earthquakes (such as M ≥ 6.0 or 7.0) could be resolved.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:05:42Z (GMT). No. of bitstreams: 1
ntu-103-D97224009-1.pdf: 11796183 bytes, checksum: 560862e04f6f7f62c7eaaed151daa313 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents論文口試委員會審定書i
誌謝 ii
中文摘要 I
Abstract III
Chapter I Introduction 1
1.1 Motivation 1
1.2 Outline of dissertation 4
Chapter II Re-examining source parameters of the 2012 Wutai, Taiwan earthquake 6
2.0 Abstract 6
2.1 Introduction 7
2.2 Data and Methods 10
2.2.1 Data 10
2.2.2 Relocation scheme 12
2.2.3 Focal mechanism determination and FMPF 12
2.3 Synthetic tests on FMPF 14
2.4 Results and discussion 17
2.4.1 The relocated hypocenter and the re-determined focal mechanism 17
2.4.2 Depth searching of Wutai earthquake by FMPF 18
2.4.3 Tectonic implication of focal depth of Wuati earthquake 21
2.5 Conclusions 24
Chapter III Role of the Lishan Fault on mountain building in Central Taiwan: inferred from seismic tomography 26
3.0 Abstract 26
3.1 Introduction 27
3.2 Data and Methodology 32
3.2.1 Data 32
3.2.2 Tomography inversion 34
3.2.3 Model Resolution 36
3.3 Results and Discussion 39
3.3.1 Uplift structures of velocity 39
3.3.2 Vp/Vs structures and rock materials 45
3.3.3 Orogenesis in central Taiwan 48
3.4 Conclusions 51
Chapter IV A study of earthquake inter-occurrence times distribution models in Taiwan 53
4.0 Abstract 53
4.1 Introduction 54
4.2 Data and methodology 57
4.2.1 Earthquake Catalog 57
4.2.2 Inter-occurrence period 64
4.2.3 Statistical analysis and goodness-of-fit testing 65
4.3 Results 68
4.3.1 The scaling of IOP 68
4.3.2 Rescale the IOP with the rate of seismic occurrence 71
4.4 Discussion 72
4.4.1 The temporal distribution of large earthquakes 72
4.4.2 Fitting with the Weibull distribution 73
4.4.3 The recurrence probabilities of large earthquakes 75
4.5 Conclusions 78
Chapter V Summary and miscellanea 79
References 81
Curriculum Vitae 93
dc.language.isozh-TW
dc.subject地震機率zh_TW
dc.subject地震統計zh_TW
dc.subject南投地震zh_TW
dc.subject基盤上拱zh_TW
dc.subject造山運動zh_TW
dc.subject霧臺地震zh_TW
dc.subject梨山斷層zh_TW
dc.subjectBasement upliften
dc.subjectWutai Earthquakeen
dc.subjectEarthquake statisticsen
dc.subjectNantou earthquakesen
dc.subjectrecurrence probabilityen
dc.subjectLishan Faulten
dc.subjectMountain buildingen
dc.title臺灣地區潛在致災地震(規模 ≥ 6.0)之研究:發震機制及地震統計觀點zh_TW
dc.titleA Study of Potential Destructive Earthquakes (ML ≥ 6.0) in Taiwan:On Seismogenic and Statistic Aspectsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee張建興,黃柏壽,林正洪
dc.subject.keyword霧臺地震,南投地震,梨山斷層,造山運動,基盤上拱,地震統計,地震機率,zh_TW
dc.subject.keywordWutai Earthquake,Nantou earthquakes,Lishan Fault,Mountain building,Basement uplift,Earthquake statistics,recurrence probability,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2014-06-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved