Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorKuo-Jen Hsuen
dc.contributor.author徐國仁zh_TW
dc.date.accessioned2021-06-16T08:05:09Z-
dc.date.available2017-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-06-26
dc.identifier.citation1. Pelvig, D.P., et al., 'Neocortical glial cell numbers in human brains.' Neurobiology of Aging, 29, 1754-1762 (2008).
2. Sporns, O., et al., 'The human connectome: A structural description of the human brain.' Plos Computational Biology, 1, 245-251 (2005).
3. Peng, H.C., et al., 'BrainAligner: 3D registration atlases of Drosophila brains.' Nature Methods, 8, 493-498 (2011).
4. Keene, A.C., et al., 'Drosophila olfactory memory: single genes to complex neural circuits.' Nature Reviews Neuroscience, 8, 341-354 (2007).
5. Chiang, A.S., et al., 'Three-Dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution.' Current Biology, 21, 1-11 (2011).
6. Adams, M.D., et al., 'The genome sequence of Drosophila melanogaster.' Science, 287, 2185-2195 (2000).
7. Medzhitov, R., et al., 'A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.' Nature, 388, 394-397 (1997).
8. Kohl, J., et al., 'A bidirectional circuit switch reroutes pheromone signals in male and female brains.' Cell, 155, 1610-1623 (2013).
9. Davis, R.L., 'Olfactory memory formation in Drosophila: From molecular to systems neuroscience.' Annual Review of Neuroscience, 28, 275-302 (2005).
10. Heisenberg, M., 'Mushroom body memoir: From maps to models.' Nature Reviews Neuroscience, 4, 266-275 (2003).
11. Patterson, G.H., et al., 'A photoactivatable GFP for selective photolabeling of proteins and cells.' Science, 297, 1873-1877 (2002).
12. Diegelmann, S., et al., 'Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control.' Genesis, 34, 95-98 (2002).
13. Hampel, S., et al., 'Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns.' Nature Methods, 8, 253-259 (2011).
14. McGuire, S.E., et al., 'Thirty years of olfactory learning and memory research in Drosophila melanogaster.' Progress in Neurobiology, 76, 328-347 (2005).
15. Margulies, C., et al., 'Deconstructing memory in Drosophila.' Current Biology, 15, R700-R713 (2005).
16. Pongs, O., et al., 'Frequenin - a novel calcium-binding protein that modulates synaptic efficacy in the drosophila nervous-system.' Neuron, 11, 15-28 (1993).
17. Scanziani, M., et al., 'Electrophysiology in the age of light.' Nature, 461, 930-939 (2009).
18. Belliveau, J.W., et al., 'Functional mapping of the human visual-cortex by magnetic-resonance-imaging.' Science, 254, 716-719 (1991).
19. Kim, S.G., et al., 'High-resolution functional magnetic resonance imaging of the animal brain.' Methods, 30, 28-41 (2003).
20. Cheng, K., 'Revealing human ocular dominance columns using high-resolution functional magnetic resonance imaging.' Neuroimage, 62, 1029-1034 (2012).
21. Tian, L., et al., 'Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.' Nature Methods, 6, 875-881 (2009).
22. Macleod, G.T., et al., 'Single neuron activity in the Drosophila larval CNS detected with calcium indicators.' Journal of Neuroscience Methods, 127, 167-178 (2003).
23. Davila, H.V., et al., 'Large change in axon fluorescence that provides a promising method for measuring membrane-potential.' Nature-New Biology, 241, 159-160 (1973).
24. Quinn, W.G., et al., 'Learning and courtship in Drosophila - 2 stories with mutants.' Annual Review of Neuroscience, 7, 67-93 (1984).
25. Dudai, Y., 'Genes, enzymes and learning in Drosophila.' Trends in Neurosciences, 8, 18-21 (1985).
26. Tully, T., 'Drosophila learning and memory revisited.' Trends in Neurosciences, 10, 330-335 (1987).
27. Reddy, G.D., et al., 'Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity.' Nature Neuroscience, 11, 713-720 (2008).
28. Gobel, W., et al., 'Imaging cellular network dynamics in three dimensions using fast 3D laser scanning.' Nature Methods, 4, 73-79 (2007).
29. Duocastella, M., et al., 'Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.' Journal of Biomedical Optics, 17, 050505 (2012).
30. Dal Maschio, M., et al., 'Three-dimensional in vivo scanning microscopy with inertia-free focus control.' Optics Letters, 36, 3503-3505 (2011).
31. Olivier, N., et al., 'Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens.' Optics Letters, 34, 1684-1686 (2009).
32. Salome, R., et al., 'Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.' Journal of Neuroscience Methods, 154, 161-174 (2006).
33. Iyer, V., et al., 'Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy.' Journal of Neurophysiology, 95, 535-545 (2006).
34. Oku, H., et al., 'Variable-focus lens with 1-kHz bandwidth.' Optics Express, 12, 2138-2149 (2004).
35. Prevedel, R., et al., 'Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy.' Nature Methods, Advance online publication, 10.1038/nmeth.2964 (2014).
36. Schrodel, T., et al., 'Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light.' Nature Methods, 10, 1013-1020 (2013).
37. Quirin, S., et al., 'Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging.' Optics Express, 21, 16007-16021 (2013).
38. Panier, T., et al., 'Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy.' Frontiers in Neural Circuits, 7, 65 (2013).
39. Ahrens, M.B., et al., 'Whole-brain functional imaging at cellular resolution using light-sheet microscopy.' Nature Methods, 10, 413-420 (2013).
40. Cheng, A., et al., 'Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing.' Nature Methods, 8, 139-142 (2011).
41. Grewe, B.F., et al., 'High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.' Nature Methods, 7, 399-405 (2010).
42. Murali, S., et al., 'Three-dimensional adaptive microscopy using embedded liquid lens.' Optics Letters, 34, 145-147 (2009).
43. Nikolenko, V., et al., 'SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators.' Frontiers in Neural Circuits, 2, 2008 (2008).
44. Bahlmann, K., et al., 'Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz.' Optics Express, 15, 10991-10998 (2007).
45. Fittinghoff, D.N., et al., 'Time-decorrelated multifocal array for multiphoton microscopy and micromachining.' Optics Letters, 25, 1213-1215 (2000).
46. Bewersdorf, J., et al., 'Multifocal multiphoton microscopy.' Optics Letters, 23, 655-657 (1998).
47. Camillo Golgi, S.R.y.C., 'In recognition of their work on the structure of the nervous system.' Nobel Prize lecture, (1906).
48. Riordan, M., Image and logic - A material culture of microphysics, in New York Times Book Review. 1997.
49. Megias, M., et al., 'Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells.' Neuroscience, 102, 527-540 (2001).
50. Brakenhoff, G.J., et al., 'Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system.' Journal of Microscopy-Oxford, 181, 253-259 (1996).
51. McLeod, E., et al., 'Mechanics and refractive power optimization of tunable acoustic gradient lenses.' Journal of Applied Physics, 102, 033104 (2007).
52. McLeod, E., et al., 'Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens.' Optics Letters, 31, 3155-3157 (2006).
53. Abrahamsson, S., et al., 'Fast multicolor 3D imaging using aberration-corrected multifocus microscopy.' Nature Methods, 10, 60-63 (2013).
54. Levoy, M., et al., 'Light field microscopy.' Acm Transactions on Graphics, 25, 924-934 (2006).
55. Levoy, M., et al., 'Recording and controlling the 4D light field in a microscope using microlens arrays.' Journal of Microscopy, 235, 144-162 (2009).
56. Agard, D.A., 'Optical sectioning microscopy - cellular architecture in 3 dimensions.' Annual Review of Biophysics and Bioengineering, 13, 191-219 (1984).
57. Broxton, M., et al., 'Wave optics theory and 3-D deconvolution for the light field microscope.' Optics Express, 21, 25418-25439 (2013).
58. Mermillod-Blondin, A., et al., 'High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens.' Optics Letters, 33, 2146-2148 (2008).
59. Yan, J., et al. Rapidly tunable acoustic gradient index lenses for pulsed imaging and laser processing. in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009. Baltimore, Maryland: Optical Society of America.
60. White, J.G., et al., 'The structure of the nervous-system of the nematode Caenorhabditis-elegans.' Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 314, 1-340 (1986).
61. Bier, E., 'Drosophila, the golden bug, emerges as a tool for human genetics.' Nature Reviews Genetics, 6, 9-23 (2005).
62. Lemaitre, B., 'The genome sequence of Drosophila melanogaster.' M S-Medecine Sciences, 16, 693-695 (2000).
63. Giot, L., et al., 'A protein interaction map of Drosophila melanogaster.' Science, 302, 1727-1736 (2003).
64. Hansson, B.S., et al., 'Function and morphology of the antennal lobe: New developments.' Annual Review of Entomology, 45, 203-231 (2000).
65. Kenyon, F.C., 'The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda.' Journal of Comparative Neurology, 6, 133-210 (1896).
66. Akerboom, J., et al., 'Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design.' Journal of Biological Chemistry, 284, 6455-6464 (2009).
67. Schroll, C., et al., 'Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae.' Current Biology, 16, 1741-1747 (2006).
68. Akerboom, J., et al., 'Optimization of a GCaMP calcium indicator for neural activity imaging.' Journal of Neuroscience, 32, 13819-13840 (2012).
69. Arnold, C.B., et al., Tunable acoustic gradient index of refraction lens and system. 2013, Google Patents.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58052-
dc.description.abstract中樞神經系統的神經生理活動一直都與腦如何運作有很大的關係。眾多神經退化性疾病譬如: 阿茲海默氏症、帕金森氏症、杭丁頓舞蹈症等等,都與神經系統的運作息息相關,因此研究活體神經功能在今日極為重要。就我們所知,神經網路具有高度複雜的三維空間結構,同時神經活動發生在數毫秒內,而神經細胞大小約數微米,因此研究神經活動的方法必須具有高的時間與空間解析度且同時具有解析三維空間的能力。
傳統電生理學雖可提供非常好的時間解析度以及相當高的訊雜比,然而,在空間上要在兩個相鄰的神經細胞插上電極直至目前為止仍然是相當困難的;不僅如此,其侵入式的做法是否會影響神經細胞本身的生理狀態仍有待商榷。而功能性磁共振成像雖提供了非侵入式的做法並大大提高了穿透深度到足以觀察人腦的神經活動,但其時間與空間的解析度卻不足以分辨單一神經細胞活動。
相較之下,光學成像技術可以在活體內具有單一神經細胞的空間解析度,並且可同時觀察多個神經細胞活動,即是一項值得神經研究嘗試使用的方法。傳統顯微技術如共軛焦、多光子顯微術等雖然具有光學切片能力而能夠提供良好的影像對比,但應用在神經活動的研究上卻無法同時觀察到軸向上分離的神經活動,這項缺失進而促使了高速三維光學成像技術的發展。到目前為止的進展譬如聲光偏轉器、三維空間雷射掃描等技術利用空間局部取樣的方法增加取樣速度已被證實可以同時監控軸向分離的神經活動,然而空間局部取樣使用的前提是依賴在樣本具有非常好的空間穩定性,這卻是在活體研究上難以達成的。因此這篇論文採用聲光可調梯度折射率透鏡結合光學切片雷射掃描顯微鏡軸向延展焦點,進而實現相對傳統共軛焦、多光子顯微術更厚的光學切片,組成影像研究空間中軸向分開的神經活動,利用影像觀察神經活動將不受限於樣本的空間穩定性且可提供局部資訊以利科學家判定細胞種類及功能,這就是全焦距功能性成像系統的概念。
聲光可調梯度折射率透鏡已有文獻證實不論是結合雷射掃描或是明視野顯微鏡都可以提供相對傳統共軛焦、多光子顯微術更大的景深,而不同的景深可藉由調控聲波震幅以及頻率獲得。雖然這項技術已被應用在觀察果蠅幼蟲的生長,但卻尚未有文獻將這項技術優化使得焦點延展的長度符合理論預測,並且均勻化軸向的影像對比進一步將其應用在神經活動的研究。因此這篇論文中也將探討如何優化這項技術並應用其為實現全焦距功能性成像系統的研究方法。
本篇論文的研究對象是果蠅。短的生命週期、龐大的子代數量以及眾多的基因變異使牠成為一個良好的模式生物。果蠅的大腦由約十萬顆神經細胞構成,雖然相對於人腦的一百億顆,這是個微小的數目;但這樣的結構足以使果蠅具有簡單的行為模式以利科學家研究建立模型以簡化研究人腦的困難度。而在眾多感覺及行為中,嗅覺相對來說較為容易操控與理解,而果蠅的嗅覺傳導機制和人類很接近,因此這篇論文選擇果蠅的嗅覺神經系統為研究目標。利用全焦距功能性成像系統證實可同時觀察到在果蠅腦內軸向分離數十甚至上百微米不同區塊的嗅覺神經活動。這項結果不僅在技術上是一項重大突破,在生物研究上也是世界上第一個果蠅全腦功能性成像,這項具備高空間解析度且非侵入式的技術相信在未來能夠提供神經科學家一項強而有力的研究工具。
zh_TW
dc.description.abstractNeural network dynamics in central nervous system are the key to resolve a big question, how the brain functions, nowadays. Many neural diseases such as Alzheimer’s, Parkinson’s and Huntington’s, are directly linked to brain functions. As a result, in order to reveal the secrets behind these diseases, in vivo neurophysiology researches are important. Neural networks exhibits complex 3-dimensional (3D) structures and neural events have temporal and spatial scales on millisecond (ms) and micrometer (en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:05:09Z (GMT). No. of bitstreams: 1
ntu-103-R01222011-1.pdf: 3985162 bytes, checksum: 13313e8a7f9f51b4bec21cc9ddfcb45f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 II
致謝 III
中文摘要 V
ABSTRACT VII
CONTENTS X
Chapter 1. Introduction 1
Chapter 2. Optical Methods for Neural Study 4
2.1 Historical review 4
2.2 Obstacles of optical methods for neural study 5
2.3 Current 3D optical methods for neural study 5
2.3.1. Multifocal multiphoton microscopy (MMM) 6
2.3.2. 3D laser line scanning 7
2.3.3. Random access microscopy (RAM) 7
2.3.4. Others 9
2.4 Strategy-TAG lens 15
2.4.1. Introduction 15
2.4.2. Comparison with other research 18
Chapter 3. Sample 30
3.1 Drosophila Melanogaster (D. Melanogaster) 30
3.2 Olfactory system 30
3.3 Genetically encoded calcium indicators (GECIs) 33
Chapter 4. Experiments and Results 34
4.1 Temporal modulation of TAG Lens 34
4.1.1. Setup 34
4.1.2. Steps 36
4.1.3. Results 37
4.2 PSF measurement and test on fluorescence study 37
4.2.1. Setup 38
4.2.2. Steps 39
4.2.3. Results 40
4.3 All-in-focus imaging 46
4.3.1. Setup 47
4.3.2. Steps 48
4.3.3. Results 48
4.4 All-in-focus functional imaging 51
4.4.1. Setup 51
4.4.2. Steps 52
4.4.3. Results 53
Chapter 5. Discussion 58
5.1 PSF measurement and test on fluorescence study 58
5.2 All-in-focus functional imaging 59
Chapter 6. Conclusion and Prospect 63
Figure list 66
Table list 69
References 70
dc.language.isoen
dc.subject全焦距zh_TW
dc.subject果蠅zh_TW
dc.subject雷射掃描顯微鏡zh_TW
dc.subject變焦透鏡zh_TW
dc.subjectDrosophilaen
dc.subjectlaser scanning microscopyen
dc.subjectall-in-focusen
dc.subjectvariable lensen
dc.title全焦距功能性成像系統應用於果蠅腦內活動之研究zh_TW
dc.titleAll-in-focus Functional Imaging System for Drosophila Brain Activities Studyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林彥穎(Yen-Yin Lin),江安世(Ann-Shyn Chiang)
dc.subject.keyword變焦透鏡,雷射掃描顯微鏡,全焦距,果蠅,zh_TW
dc.subject.keywordvariable lens,laser scanning microscopy,all-in-focus,Drosophila,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2014-06-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved