Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇
dc.contributor.authorChi-Cheng Huangen
dc.contributor.author黃其晟zh_TW
dc.date.accessioned2021-06-16T08:04:34Z-
dc.date.available2016-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-06-29
dc.identifier.citation1. Annual Report 2010, Health Promotion Administration, Ministry of Health and Welfare, Executive Yuan, R.O.C.
2. O'Brien KM1, Cole SR, Tse CK, et al. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res. 2010;16: 6100-10.
3. Khatcheressian JL, Hurley P, Bantug E, et al. American Society of Clinical Oncology. Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31: 961-5.
4. Fitzgibbons PL, Page DL, Weaver D, et al.. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124: 966-78.
5. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature. 2000;406: 747-52.
6. Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98: 10869-74.
7. Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100: 8418-23.
8. Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19: 264-71.
9. Carey LA, Perou CM, Dresslerl LG et al. Race and the poor prognosis basal breast tumor (BBT) phenotype in the population-based Carolina Breast Cancer Study (CBCS). J Clin Onc. 2004;22(14_suppl): 9510.
10. van 't Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415: 530-6.
11. Ma XJ, Salunga R, Tuggle JT et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100: 5974-9.
12. Ma XJ, Wang Z, Ryan PD, et al. A two gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5: 607-16.
13. Warnberg F, Nordgren H, Bergkvist L et al. Tumour markers in breast carcinoma correlate with grade rather than with invasiveness. Br J Cancer. 2001;85: 869-74.
14. Schuetz CS, Bonin M, Clare SE et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006;66: 5278-86.
15. Sotiriou C, Wirapati P, Loi S et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98: 262-72.
16. Fan C, Oh DS, Wessels L et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355: 560-9.
17. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351: 2817-26.
18. Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A. 2005;102: 3738-43.
19. Fazeny-Dörner B, Piribauer M, Wenzel C, et al. Cytogenetic and comparative genomic hybridization findings in four cases of breast cancer after neoadjuvant chemotherapy. Cancer Genet Cytogenet. 2003;146: 161-6.
20. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20: 207-11.
21. Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23: 41-6.
22. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66: 488-95.
23. van Beers EH, Nederlof PM. Array-CGH and breast cancer. Breast Cancer Res. 2006;8: 210.
24. Reis-Filho JS, Simpson PT, Gale T, et al. The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract. 2005;201: 713-25.
25. Zudaire I, Odero MD, Caballero C, et al. Genomic imbalances detected by comparative genomic hybridization are prognostic markers in invasive ductal breast carcinomas. Histopathology. 2002;40: 547-55.
26. Nessling M, Richter K, Schwaenen C, et al. Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res. 2005;65: 439-47.
27. Bergamaschi A, Kim YH, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer. 2006;45: 1033-40.
28. Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10: 529-41.
29. Andre F, Job B, Dessen P, et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res. 2009;15: 441-51.
30. Han W, Jung EM, Cho J, et al. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer. 2008;47: 490-9.
31. Haverty PM, Fridlyand J, Li L, et al. High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer. 2008;47: 530-42.
32. Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002;62: 6240-5.
33. Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131: 18-43.
34. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19: 403-10.
35. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4: 249-64.
36. Olshen AB, Venkatraman ES, Lucito R, et al. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5: 557-72.
37. Simon R, Lam A, Li MC, et al. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 2007;3: 11-7.
38. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23: 657-63.
39. Willenbrock H, Fridlyand J. A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics. 2005;21: 4084-91.
40. Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;104: 20007-12.
41. Hu Z, Fan C, Oh DS, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7: 96.
42. Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100:10393-8.
43. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160-7.
44. Lusa L, McShane LM, Reid JF, et al. Challenges in projecting clustering results across gene expression-profiling datasets. J Natl Cancer Inst. 2007;99:1715-23.
45. Weigelt B, Mackay A, A'hern R, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11:339-49.
46. Mackay A, Weigelt B, Grigoriadis A, et al. Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst. 2011;103: 662-73.
47. Lu X, Lu X, Wang ZC, et al. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat. 2008;108:191-201.
48. Sørlie T, Borgan E, Myhre S, et al. The importance of gene-centring microarray data. Lancet Oncol. 2010;11: 719-20.
49. Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20: 105-14.
50. Pusztai L, Mazouni C, Anderson K, et al. Molecular classifications of breast cancer: limitations and potential. Oncologist. 2006;11: 868-77.
51. Weigelt B, Reis-Filho JS. Molecular profiling currently offers no more than tumour morphology and basic immunohistochemistry. Breast Cancer Res. 2010;12(Suppl 4): S5.
52. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer. 2011;11: 143.
53. Karn T, Metzler D, Ruckhäberle E, et al. Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Res Treat. 2010;120: 567-79.
54. Chang CC, Lin CJ. LIBSVM : a library for support vector machines. ACM TIST. 2011;2: 1-27.
55. Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLOS Biology. 2004;2: 511-22.
56. Huang CC, Tu SH, Lien HH, et al. Prediction consistency and clinical presentations of breast cancer molecular subtypes for Han Chinese population. J Transl Med. 2012;10(Suppl 1): S10.
57. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347: 1999-2009.
58. Wang Y, Klijn JG, Zhang Y. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365: 671-9.
59. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-50.
60. Stankiewicz P, Lupski JR. Structural variations in the human genome and its role in disease. Annu Rev Med. 2010;61: 437-55.
61. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444: 444-54.
62. Huang CC, Tu SH, Lien HH, et al. Estrogen receptor status prediction by gene component regression: a comparative study. IJDMB. 2014;9:149-71.
63. Kamalakaran S, Radhakrishnan SK, Beck WT. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Bilo Chem. 2005;280: 21491-7.
64. Singh S, Shi Q, Bailey ST, et al. Nuclear factor-kappa B activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer. Mol Cancer Ther. 2007;6: 1973-82.
65. Ciucci A, Gianferretti P, Piva R, et al. Induction of apoptosis in estrogen receptor-negative breast cancer cells by natural and synthetic cyclopentenones: role of the IkappaB kinase/nuclear factor-kappaB pathway. Mol Pharmacol. 2006;70: 1812-21.
66. Staaf J, Jönsson G, Ringnér M, et al. High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res. 2010;12: R25.
67. Ling B, Zheng H, Fu G, et al. Suppression of non-small cell lung cancer proliferation and tumorigenicity by DENND2D. Lung Cancer. 2012;79: 104-10.
68. Shibata M, Sato T, Nukiwa R, et al. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun. 2012;423 :104-9.
69. Miyoshi N, Ishii H, Mimori K, et al. SCRN1 is a novel marker for prognosis in colorectal cancer. J Surg Oncol. 2010;101: 156-9.
70. Kim SY, Dunn IF, Firestein R, et al. CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One. 2010;5: e8979.
71. Wang X, Goode EL, Fredericksen ZS, et al. Association of genetic variation in genes implicated in the beta-catenin destruction complex with risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17: 2101-8.
72. Liu S, Li L, Zhang Y, et al. The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells. J Biol Chem. 2012;287: 30228-39.
73. Cui W, Zhao Y, Shan C, et al. HBXIP upregulates CD46, CD55 and CD59 through ERK1/2/NF-κB signaling to protect breast cancer cells from complement attack. FEBS Lett. 2012;586: 766-71.
74. Boulesteix, Strobl C, Augustin T, et al. Evaluating microarray-based classifiers: an overview. Cancer Inform. 2008;6: 77-97.
75. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002;97: 77-87.
76. Dupuy A, Simon R. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst. 2007;99: 147-57.
77. Dai JJ, Lieu L, Rocke D. Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol. 2006;5: Article 6.
78. Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18: 39-50.
79. Nguyen DV, Rocke DM. Multi-class cancer classification via partial least squares with gene expression profile. Bioinformatics. 2002;18: 1216-26.
80. Pérez-Enciso M, Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet. 2003;112: 581-92.
81. Huang CC, Tu SH, Chuang EY. Dissecting the heterogeneity of luminal subtype breast cancer using gene component analysis. JCMRD. 2013;2: 21-7.
82. Van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemometr Intell Lab Syst. 1994;25: 313-23
83. Tobias RD. An introduction to partial least squares regression. SAS Institute, NC., 1997.
84. Huang CC, Tu SH, Lien HH, et al. Concurrent gene signatures for han chinese breast cancers. PLoS One. 2013;8: e76421.
85. West M, Blanchette C, Dressman H, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A. 2001;98: 11462-7.
86. Huang E, Cheng SH, Dressman H, et al. Gene expression predictors of breast cancer outcomes. Lancet. 2003; 361: 1590-6.
87. Musumarra G, Barresi V, Condorelli DF,et al. Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysisy. J Chemom. 2004;18: 125-32.
88. Tan Y, Shi L, Tong W, et al. Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput Biol Chem. 2004;28: 235-44.
89. Dabney AR. ClaNC: point-and-click software for classifying microarrays to nearest centroids. Bioinformatics. 2006;22: 122-3.
90. Arranz EE, Vara JÁ, Gámez-Pozo A,et al. Gene signatures in breast cancer: current and future uses. Transl Oncol. 2012;5: 398-403.
91. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5: 5-23.
92. Peppercorn J, Perou CM, Carey LA. Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest. 2008;26: 1-10.
93. Naoi Y, Kishi K, Tanei T, et al. High genomic grade index associated with poor prognosis for lymph node-negative and estrogen receptor-positive breast cancers and with good response to chemotherapy. Cancer. 2011;117: 472-9.
94. Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31: 2783-90.
95. Haibe-Kains B, Desmedt C, Loi S,et al. A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst. 2012;104: 311-25.
96. Györffy B, Schäfer R. Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res Treat. 2009;118: 433-41.
97. Huang CC, Tu SH, Huang CS, et al. Multiclass prediction with partial least square regression for gene expression data: applications in breast cancer intrinsic taxonomy. Biomed Res Int. 2013;2013: 248648.
98. Schmidt M, Böhm D, von Törne C, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68: 5405-13.
99. Sabatier R, Finetti P, Cervera N, et al. A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat. 2011;126: 407-20.
100. Hatzis C, Pusztai L, Valero V, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011;305: 1873-81.
101. Loi S, Haibe-Kains B, Desmedt C, et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics. 2008;9: 239.
102. Desmedt C, Giobbie-Hurder A, Neven P, et al. The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial. BMC Med Genomics. 2009;2: 40.
103. Minn AJ, Gupta GP, Siegel PM, et al. Massagué J.Genes that mediate breast cancer metastasis to lung. Nature. 2005;436: 518-24.
104. Zhang Y, Sieuwerts AM, McGreevy M, et al. The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat. 2009;116: 303-9.
105. Symmans WF, Hatzis C, Sotiriou C, et al. Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol. 2010;28: 4111-9.
106. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360: 790-800.
107. Gatza ML, Lucas JE, Barry WT, et al. Mathey-Prevot B, Potti A, Nevins JR. A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010;107: 6994-9.
108. Wirapati P, Sotiriou C, Kunkel S, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10: R65.
109. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8: 118-27.
110. Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A. 2000;97: 10101-6.
111. Boidot R, Vegran F, Jacob D, et al. The expression of BIRC5 is correlated with loss of specific chromosomal regions in breast carcinomas. Genes Chromosomes Cancer. 2008;47: 299-308.
112. Thorner AR, Hoadley KA, Parker JS, et al. In vitro and in vivo analysis of B-Myb in basal-like breast cancer. Oncogene. 2009;28: 742-51.
113. Pickard MR, Green AR, Ellis IO, et al. Dysregulated expression of Fau and MELK is associated with poor prognosis in breast cancer. Breast Cancer Res. 2009;11: R60.
114. Lin ML, Park JH, Nishidate T, et al. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res. 2007;9: R17.
115. Kim KI, Lee KH, Kim TR, et al. Ki-67 as a predictor of response to neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer. 2014;17: 40-6.
116. Dawson SJ, Makretsov N, Blows FM, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br J Cancer. 2010;103: 668-75.
117. Muthuswami M, Ramesh V, Banerjee S, et al. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition. PLoS One. 2013;8: e77553.
118. Shimo A, Tanikawa C, Nishidate T, et al. Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci. 2008;99: 62-70.
119. Zhang C, Han Y, Huang H, et al. Integrated analysis of expression profiling data identifies three genes in correlation with poor prognosis of triple-negative breast cancer. Int J Oncol. 2014;44: 2025-33.
120. Agarwal R, Gonzalez-Angulo AM, Myhre S, et al. Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res. 2009;15: 3654-62.
121. Miller LD, Smeds J, George J, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A. 2005;102: 13550-5.
122. Desmedt C, Piette F, Loi S, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res. 2007;13: 3207-14.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58014-
dc.description.abstract基因拷貝數目變異(copy number variation, CNV)和差異性基因表現間的相互關聯可以增進乳癌分子醫學的了解並找出癌症相關的標的基因。在本研究中,我們使用微陣列基因晶片找出在競爭性基因雜交(comparative genomic hybridization, CGH)和基因表現間有同向性變異的基因,並使用這些同向性基因來建立漢民族乳癌的基因標記。
我們對台灣乳癌檢體進行了23片競爭性基因雜交和81片基因表現的微陣列基因晶片,其中有21組檢體同時進行了競爭性基因雜交和基因表現兩種實驗。我們把在兩種平台上有一致性變異的同向性基因找出,並使用這些同向性基因建立臨床雌激素接受體ER、人類上皮生長因子接受體第二型HER2和無疾病存活期相關的基因標記。
同向性基因標記基因的分布和染色體的位置有強烈的關聯:如雌激素接受體ER 標記基因多位於第16號染色體,人類上皮生長因子第二型接受體HER2標記基因位於第17號染色體。我們使用了16個基因(RCAN3, MCOLN2, DENND2D, RWDD3,ZMYM6, CAPZA1, GPR18, WARS2, TRIM45, SCRN1, CSNK1E,HBXIP, CSDE1, MRPL20, IKZF1,與COL20A1)建立的第一主成分來建立乳癌風險預測模型,在合併408 片微陣列晶片組成的漢民族乳癌研究對象中,預測高風險和低風險的乳癌病患表現出不同的存活趨勢。經歷復發、遠端轉移或死亡的病患比起無病存活者有顯著較高的危險分數(0.241 相對於0,P值小於0.001)。在分組分析中,不論臨床雌激素接受體和人類上皮生長因子接受體第二型的狀態,同向性基因標記乳癌風險預測模型都能維持其鑑別能力。與其他已發表的乳癌基因標記相比,乳癌同性性基因標記有較佳的預後鑑別力,其中許多同向性基因標的無法由傳統的表現型相關或基因個別變異的篩選方式辨識篩選出來。
藉由同時進行競爭性基因雜交和基因表現的數據分析,我們可以找出乳癌中具預後價值的生物標記。
zh_TW
dc.description.abstractThe interplay between copy number variation (CNV) and differential gene expression may be able to shed light on molecular process underlying breast cancer and lead to the discovery of cancer-related genes. In the current study, genes concurrently identified in array comparative genomic hybridization (CGH) and gene expression microarrays were used to derive gene signatures for Han Chinese breast cancers.
We performed 23 array CGHs and 81 gene expression microarrays in breast cancer samples from Taiwanese women. Genes with coherent patterns of both CNV and differential gene expression were identified from the 21 samples assayed using both platforms. We used these genes to derive signatures associated with clinical ER and HER2 status and disease-free survival.
Distributions of signature genes were strongly associated with chromosomal location: chromosome 16 for ER and 17 for HER2. A breast cancer risk predictive model was built based on the first supervised principal component from 16 genes (RCAN3, MCOLN2, DENND2D, RWDD3, ZMYM6, CAPZA1, GPR18, WARS2, TRIM45, SCRN1, CSNK1E, HBXIP, CSDE1, MRPL20, IKZF1, and COL20A1), and distinct survival patterns were observed between the high- and low-risk groups from the combined dataset of 408 microarrays. The risk score was significantly higher in breast cancer patients with recurrence, metastasis, or mortality than in relapse-free individuals (0.241 versus 0, P<0.001). The concurrent gene risk predictive model remained discriminative across distinct clinical ER and HER2 statuses in subgroup analysis. Prognostic comparisons with published gene expression signatures showed a better discerning ability of concurrent genes, many of which were rarely identifiable if expression data were pre-selected by phenotype correlations or variability of individual genes.
We conclude that parallel analysis of CGH and microarray data, in conjunction with known gene expression patterns, can be used to identify biomarkers with prognostic values in breast cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:04:34Z (GMT). No. of bitstreams: 1
ntu-103-D95945005-1.pdf: 10098603 bytes, checksum: bba33a0fab5daa4c4ace5e26c387cb24 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
目錄 iii
中文摘要 1
英文摘要 3
Chapter 1 Genomic and transcriptional research in breast cancer: literature reviews 5
1.1 Background and significance 6
1.2 Gene expression in breast cancers 7
1.2.1 Intrinsic subtypes and basal-like breast cancer 7
1.2.2 The 70-gene signature 9
1.3 Gene expression associated with clinical stage and differential grade 9
1.4 Concordance across gene expression signatures 12
1.5 Genomic variations in breast cancers 13
1.5.1 Genomic variation studies: literature reviews 14
1.5.2 Prognostic genomic variations 14
1.5.3 Correlations between copy number variations and gene expression 15
1.5.4 Concurrent analysis: a hypothesis 15
1.6 An overview of the dissertation 16
Chapter 2 Study population and microarray experiments 18
2.1 Breast cancer samples 18
2.2 Microarray experiments: gene expression 19
2.3 Microarray experiments: comparative genomic hybridization 20
2.4 Copy number variation detection 21
Chapter 3 Gene expression experiments: Prediction consistency and clinical presentations of breast cancer molecular subtypes for Han Chinese population 23
3.1 Abstract 23
3.2 Background 24
3.3 Materials and methods 26
3.3.1 Study population and microarray experiments 26
3.3.2 Intrinsic gene lists and prototypical samples 28
3.3.3 Single sample prediction and systemic bias adjustment 29
3.4 Results 29
3.4.1 Distributions of molecular subtypes 29
3.4.2 Agreement between adjustment methods with the same intrinsic genes 30
3.4.3 Agreement between intrinsic gene sets with the same adjustment 30
3.4.4 Clinical features of molecular subtypes 31
3.5 Discussion 32
Chapter 4 Concurrent analysis between genomic and transcriptional alternations: Concurrent genes signatures for Han Chinese breast cancers 38
4.1 Abstract 38
4.2 Materials and methods 40
4.2.1 Concurrent gains and losses 40
4.2.2 Combined dataset 41
4.2.3 Determining clinical ER and HER2 status from gene expression data 42
4.2.4 Concurrent signatures and classification algorithms 43
4.2.5 Breast cancer risk (survival) predictive model 45
4.2.6 Molecular subtyping by intrinsic genes 46
4.2.7 Breast cancer risk predictive model based on genes from Amsterdam, Rotterdam, and Oncotype DXTM signatures 47
4.2.8 Gene set enrichment analysis for concurrent genes 48
4.2.9 Concurrent gene sets for GSEA 49
4.3 Results 50
4.3.1 Analysis of array CGH experiments 50
4.3.2 Correlations between CNV and gene expression profiles 51
4.3.3 ER signature 52
4.3.4 HER2 signature 54
4.3.5 Survival prediction model 56
4.3.6 Prognostic comparisons between concurrent genes and Stanford/UNC intrinsic genes 58
4.3.7 Prognostic comparisons between concurrent genes and genes reported in Amsterdam/Rotterdam/Oncotype DXTM signatures 60
4.3.8 GSEA for concurrent gene signatures 61
4.4 Discussion 63
Chapter 5 Microarray classification algorithm: Multiclass prediction with partial least square regression for gene expression data: applications in breast cancer intrinsic taxonomy 73
5.1 Abstract 73
5.2 Introduction 74
5.3 Materials and methods 76
5.3.1 Breast cancer intrinsic taxonomy 76
5.3.2 PLS-regression classifier 77
5.3.3 Validation dataset 80
5.4 Results 82
5.4.1 PLS-regression in prototypical arrays 82
5.4.2 PLS regression in validation arrays 82
5.4.3 Clinical presentations and prognostic discrepancies among intrinsic taxonomy 83
5.5 Discussion 84
Chapter 6 Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures 92
6.1 Abstract 92
6.2 Introduction 93
6.3 Materials and Methods 96
6.3.1 Prognostic signatures for breast cancer 96
6.3.2 Gene identity conversions 97
6.3.3 Microarray depositories for training and validation purposes 98
6.3.4 Prognostic gene signature sets identified by supervised principal components 100
6.3.5 Concordant leading edge analysis 101
6.3.6 Risk prediction model with partial least squares regression 102
6.3.7 Prognostic signature of breast cancer 103
6.3.8 Breast cancer microarray studies 106
6.4 Results 110
6.4.1 Breast cancer prognostic signatures and derived gene sets in training datasets 110
6.4.2 Concordant leading edge subsets for individual prognostic signature 111
6.4.3 Breast cancer risk prediction in training datasets 112
6.4.4 Breast cancer risk prediction in independent datasets 113
6.5 Discussion 114
Chapter 7 Extended concurrent signature 124
7.1 Abstract 124
7.2 Materials and methods 126
7.2.1 Microarray experiments 126
7.2.2 PLS-regression tuned by concurrence 126
7.2.3 In-silicon validation 127
7.3 Results 127
7.3.1 Array CGH experiments 128
7.3.2 Extended concurrent genes 128
7.3.3 Signatures for ER, HER2, and disease-free survival 129
7.4 Conclusion 130
Chapter 8 Conclusion and future perspectives 131
8.1 Relevant breast cancer genomic/transcriptional studies 131
8.2 Summary and conclusion 142
8.3 Future perspectives 143
8.4 Purposed aims in future studies 144
References 147

表目錄
Tables 156
Table 2-1.. 156
Table 3-1.. 157
Table 3-2. 158
Table 3-3. 159
Table 3-4.. 160
Table 3-5.. 161
Table 3-6.. 162
Table 4-1. 163
Table 4-2.. 165
Table 4-3. 166
Table 4-4.. 167
Table 4-5. 169
Table 4-6.. 171
Table 4-7.. 172
Table 4-8.. 173
Table 4-9. 174
Table 4-10. 175
Table 4-11. 176
Table 4-12. 177
Table 4-13. 178
Table 4-14. 179
Table 4-15. 180
Table 5-1. 182
Table 5-2. 183
Table 5-3. 184
Table 5-4. 185
Table 5-5.. 186
Table 5-6. 187
Table 6-1. 188
Table 6-2. 189
Table 6-3. 190
Table 6-4.. 191
Table 6-5. 192
Table 6-6. 193
Table 6-7. 194
Table 6-8. 195
Table 6-9. 196
Table 6-10.. 197
Table 6-11. 198
Table 6-12. 199
Table 6-13. 201
Table 6-14. 202
Table 6-15. 203
Table 7-1. 204
Table 7-2. 205
Table 7-3. 206
Table 7-4. 207

圖目錄
Figures 208
Figure 1-1. 208
Figure 3-1. 209
Figure 4-1. 211
Figure 4-2. 212
Figure 4-3.. 214
Figure 4-4. 215
Figure 4-5. 216
Figure 4-6. 217
Figure 4-7. 218
Figure 4-8. 219
Figure 4-9. 220
Figure 4-10. 221
Figure 4-11. 222
Figure 4-12. 223
Figure 4-13. 224
Figure 4-14. 225
Figure 4-15. 226
Figure 4-16. 227
Figure 5-1. 228
Figure 5-2. 229
Figure 6-1. 231
Figure 6-2. 232
Figure 6-3. 233
Figure 6-4. 234
Figure 6-5. 235
Figure 6-6. 236
Figure 6-7. 239
Figure 7-1. 242
Figure 7-2. 243
Figure 7-3.. 244
Figure 7-4. 245
Figure 7-5. 246
Figure 7-6. 247
Figure 7-7. 248
Figure 7-8. 249
Figure 7-9. 250
Figure 8-1. 251
Figure 8-2. 252
dc.language.isoen
dc.subject乳癌zh_TW
dc.subject競爭性基因雜交zh_TW
dc.subject同向性基因zh_TW
dc.subject基因表現zh_TW
dc.subject漢民族zh_TW
dc.subject基因微陣列zh_TW
dc.subjectmicroarrayen
dc.subjectconcurrent genesen
dc.subjectgene expressionen
dc.subjectHan Chineseen
dc.subjectbreast canceren
dc.subjectcomparative genomic hybridizationen
dc.title漢民族乳癌基因表現與競爭基因雜交之同向變異分析zh_TW
dc.titleConcurrent Analysis of Gene Expression and Comparative Genomic Hybridization for Han Chinese Breast Canceren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee張金堅,侯明鋒,黃俊升,歐陽彥正,賴亮全
dc.subject.keyword乳癌,競爭性基因雜交,同向性基因,基因表現,漢民族,基因微陣列,zh_TW
dc.subject.keywordbreast cancer,comparative genomic hybridization,concurrent genes,gene expression,Han Chinese,microarray,en
dc.relation.page252
dc.rights.note有償授權
dc.date.accepted2014-06-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved