請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58006
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李國譚(Kuo-Tan Li) | |
dc.contributor.author | Yu-Chuan Li | en |
dc.contributor.author | 李育全 | zh_TW |
dc.date.accessioned | 2021-06-16T08:04:27Z | - |
dc.date.available | 2020-07-21 | |
dc.date.copyright | 2020-07-21 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2020-07-17 | |
dc.identifier.citation | 林瑞進. 2018. 林業新尖兵—暗色隔膜內生菌. 林業研究專訊25:36–39. 蕭祺暉、邱順慶、曾顯雄. 2016. 植物內生真菌的角色. 科學發展. 520:38–45. Addy, H.D., S. Hambleton, and R.S. Currah. 2001. Distribution and molecular characterisation of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol. Res. 104:1213–1221. Allen, T.R., T. Millar, S.M. Berch, and M.L. Berbee. 2003. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol. 160:255–272. Andersen, R., S.J. Chapman, R.R.E. Artz. 2013. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57: 979–994. Autry, A.R. and J.W. Fitzgerald. 1990. Sulfonate S: A major form of forest soil organic sulfur. Biol. Fertil. Soils 10:50–56. Bajwa, R. and D. J. Read. 1985. The biology of mycorrhiza in the Ericaceae IX Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and nonmycorrhizal plants. New Phytol. 101:459–467. Bajwa, R. and D.J. Read. 1986. Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and non-mycorrhizal seedlings of Vaccinium. Trans. Brit. Mycol. Soc. 87:269–277. Barrow, J.R. and P. Osuna. 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J. Arid Envir 51:449–459. Bartholdy, B.A., M. Berreck, and K. Haselwandter. 2001. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. BioMetals 14:33–42. Bell, A.A. and M.H. Wheeler. 1986. Biosynthesis and functions of fungal melanins. Ann. Rev. Phytopathol. 24:411–451. Biermann, B. and R. G. Linderman. 1981. Quantifying vesicular‐arbuscular mycorrhizae: a proposed method towards standardization. New Phytol. 87:63–67. Bougoure, D.S. and J.W.G. Cairney. 2005. Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella. Environ. Microbiol. 7:819–827. Bougoure, J.J., D. S. Bougoure, J.W. Cairney, and J.D. Dearnaley. 2005. ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol. Res. 109:452–460. Bradley, R., A.J. Burt, and D.J. Read. 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91:197–209. Cairney, J.W.G. and A.A. Meharg. 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. European J. Soil Sci. 54:735–740. Carrillo, R., J. Guerrero, M. Rodríguez, and C. Meriño-Gergichevich. 2015. Colonization of blueberry (Vaccinium corymbosum) plantlets by ericoid mycorrhizae under nursery conditions. Cien. Inv. Agr. 42:365–374 Carter, D.O., D. Yellowees, and M. Tibbett. 2007. Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia 51:295–299. Cooke, J.C. and M.W. Lefor. 1998. The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor. Ecol. 6:214–222. Couture, M., J.A. Fortin, and Y. Dalpe. 1983. Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytol. 95:375–380. Cullings, K.W. 1996. Single phylogenetic origin of the world’s heath plants indicated by 28S ribosomal RNA gene sequences and the ericoid mycorrhizal symbiosis. Can. J. Bot. 74:1896–1909. Currah, R.S., A. Tsuneda, and S. Murakami. 1993. Morphology and ecology of Phialocephala fortiniiin roots of Rhododendron brachycarpum. Can. J. Bot. 71: 1639–1644. Currah, R.S., M. Niemi, and S. Huhtinen. .1999. Oidiodendron maius and Scytalidium vaccinii from the mycorrhizas of Ericaceae in northern Finland. Karstenia 39:65–68. Dalpé, Y. 1986. Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol. 103:391–396. Darnell, D.L., G.W. Stutte, G.C. Martin, G.A. Lang, and J.D. Early. 1992. Developmental physiology of rabbiteye blueberry. Hort. Rev. 13:339–405. Douglas, G.C., M.C. Heslin, and C. Reid. 1989. Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Can. J. Bot. 67:2206–2212. Eynard, I. and E. Czesnik. 1989. Incidence of mycorrhiza in 4 highbush blueberry cultivars in different soils. Acta Hort. 241:115–119. Federspiel A, R. Schuler, and K. Haselwandter. 1991. Effect of pH, L-ornithine and L-proline on the hydroxamate siderophore production by Hymenoscyphus ericae, a typical ericoid mycorrhizal fungus. Plant Soil 130:259–261. Freudenstein, J.V. 1999. Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst. Bot. 24:398–408. Gadd. G. M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41: 47–92. Gómez, B. and J. Nosanchuk. 2003. Melanin and fungi. Curr. Opin. Infect. Dis. 16:91–6. Grelet, G.A., D. Johnson, E. Paterson, I.C. Anderson, and I.J. Alexander. 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 182:359–366. Griffith, G.W. 1994. Phenoloxidases, p. 763–788. In: S.D. Martinelli and J.R. Kinghorn (eds.). Progress in industrial microbiology. Elsevier Science Publishers. Amsterdam, The Netherlands. Griffiths, R.P. and B.A. Caldwell 1992. Mycorrhizal mat communities in forest soils, p. 98–105. In: D.J. Read and D.H. Lewis (eds.). Mycorrhizas in Ecosystems. CAB Intl., Oxfordshire, UK. Grünig, C.R., V. Queloz, T.N. Sieber, and O. Holdenrieder. 2008. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. – Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany. 86:1355–1369. Hambleton, S. and L. Sigler. 2005. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡Hymenoscyphus ericae), Leotiomycetes. Studies in Mycol. 53: 1–27. Hambleton, S. and R.S. Currah. 1997. Fungal endophytes from the roots of alpine and boreal Ericaceae. Can. J. Bot. 75:1570–1581. Haselwandter, K. and D.J. Read. 1982. The significance of a root–fungus association in two Carex species of high alpine plant communities. Oecologia (Berl.) 53:352–354. Hashem, A.R. 1995. The role of mycorrhizal infection in the resistance of Vaccinium macrocarpon to manganese. Mycorrhiza 5:289–291. Haynes, R.J. and R.S. Swift. 1985. Growth and nutrient uptake by highbush blueberry plants in a peat medium as influenced by pH, applied micronutrients and mycorrhizal inoculation. Sci. Hort. 27:285–294. Jumpponen, A. and J.M. Trappe.1998. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 140:295–310. Jumpponen, A., K.G. Mattson, and J.M. Trappe.1998. Mycorrhizal functioning of Phialocephala fortinii: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265. Jumpponen, A.M. 2001. Dark septate endophytes — are they mycorrhizal? Mycorrhiza 11:207-211. Jumpponen, A.M. and J.M. Trappe. 1996. Population structure of Phialocephala fortinii on a receding glacier forefront, p128–130. In: C. Azcon-Aguilar and J.M. Barea (eds.). Mycorrhiza in integrated systems – from genes to plant development. Proceedings of Fourth European Symposium on Mycorrhiza. Commission of the European Union, Luxemburg. Kamal, S. and A. Varma. 2008. Peatland Microbiology. Springer, Berlin, Heidelberg. Kasurinen, A. and T. Holopainen. 2001. Mycorrhizal colonization of highbush blueberry and its native relatives in central Finland. Agr. Food Sci. Finland 10:113–119. Kazuhiro Maeda Katsutoshi SakuraiThormann, M.N. and A.V. Rice. 2007. Fungi from peatlands. Fungal diversity 24:241–299. Kemp, E., P. Adam, and A.E. Ashford. 2003. Seasonal changes in hair roots and mycorrhizal colonization in Woollsia pungens (Cav.) F. Muell. (Epacridaceae). Plant Soil 250:241–248. Kerley, S.J. and D.J. Read. 1995. The biology of mycorrhiza in the Ericaceae XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol. 131:369–375. Kerley, S.J. and D.J. Read. 1997. The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytol. 136:691–701. Kerley, S.J. and D.J. Read. 1998. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscypjus ericae and its host. New Phytol. 139:353–360. Knapp, D.G., G.M. Kovács, E. Zajta, J.Z. Groenewald, and P.W. Crous. 2015. Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia 35:87–100. Koron, D. and N. Gogala. 2000. The use of mycorrhizal fungi in the growing of blueberry plants (Vaccinium corymbosum L.). Acta Hortic. 525:101–105. Kottke, I., A. Beiter, M. Weiß, I. Haug, F. Oberwinkler, and M. Nebel. 2003. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol. Res. 107:957–968. Kron, K.A., W.S. Judd, P.F. Stevens, D.M. Crayn, A.A. Anderberg, P.A. Gadek, C.J. Quinn, and J.L. Luteyn. 2002. Phylogenic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68:335–423. Kuo, M.J. and M. Alexander. 1967. Inhibition of the lysis of fungi by melanins. J. Bacteriol. 94:624–629. Li, K.-T. 2009. BLUE FORMOSA- a blueberry initiative program in Taiwan. HortScience 44:1122. Lukešová, T., P. Kohout, T. Větrovský, and M. Vohník. 2015. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants. PLOS ONE 10: e0124752. Luo, L., Z.M. Wang, D. Mao, B. Zhang, C. Lu, and W. Man. 2016. Connotation and differentiation of terminology on main kinds of wetlands in English. 35:834–842. Mandyam, K. and A. Jumpponen. 2005. Seeking the elusive function of the root- colonising dark septate endophytic fungi. Stud. Mycol. 53:173–189. Mayerhofer, M.S., G. Kernaghan, and K.A. Harper. 2013. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128. Melin E. 1923. Experimentelle Untersuchungen Über die Konstitution und Ökologie den Mykorrhizen von Pinus silvestris und Picea abies. Mykologische Untersuchungen und Berichte von R. Falck 2:73–330. Menkis, A., J. Allmer, R. Vasiliauskas, V. Lygis, J. Stenlid, and R. Finlay. 2004. Ecology and molecular characterization of dark septate fungi in roots, living stems, coarse and fine woody debris. Mycol. Res. 108:965–973. Mitchell, D. and B. Gibson. 2006. Ericoid mycorrhizal association: Ability to adapt to a broad range of habitats. Mycologist 20:2–9. Mitchell, D.T. and D.J. Read. 1981. Utilization of inorganic and organic phosphates by the mycorrhizal endophytes of V. macrocarpon and R. ponticum. Trans. Br. Mycol. Soc. 76:255–260. Montalba, R., C. Arriagada, M. Alvear, and G.E. Zú˜niga. 2010. Effects of conventional and organic nitrogen fertilizers on soil microbial activity, mycorrhizal colonization, leaf antioxidant content, and Fusarium wilt in highbush blueberry (Vaccinium corymbosum L.). Sci. Hort. 125:775–778. Moore-Parkhurst, S. and L. Englander. 1982. Mycorrhizal status of Rhododendron spp. in commercial nurseries in Rhode Island. Can. J. Bot. 60:2342–2344. Newsham, K.K. 1999. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 144:517–524. Newsham, K.K. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190:783–793. O’Dell, T.E., H.B. Massicotte, and J.M. Trappe. 1993. Root colonisation of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang Wilcox. New Phytol. 124:93–100. Pearson, V. and D.J. Read. 1975 The physiology of the mycorrhizal endophyte of Calluna vulgaris. Trans. Br. Mycol. Soc. 64:1–7. Peterson, R.L., C. Wagg, and M. Pautler. 2008. Associations between microfungal endophytes and roots: do structural features indicate function? Can. J. Bot. 86:445–456. Piercey, M.M., M.N. Thormann, and R. S. Currah. 2002. Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180. Powell, C.L. and D.J. Bagyaraj. 1984. Effect of mycorrhizal inoculation on the nursery production of blueberry cuttings - a note. New Zeal J. Agr. Res. 27:467–471. Powell, C.L. and P.M. Bates. 1981. Ericoid mycorrhizas stimulate fruit yield of blueberry. HortSci 16:655-656. Read, D.J. 1974. Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of Ericaceae. Trans. Br. Mycol. Soc. 63:381–383. Read, D.J. 1991. Mycorrhizas in ecosystems. Experientia 47:376–390. Read, D.J. 1996. The structure and function of the ericoid mycorrhizal root. Ann. Bot. 77:365-374. Redman, R.S., K.B. Sheehan, R.G. Stout, R.J. Rodriguez, and J.M. Henson. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581. Retamales, J.B. and J.F. Hancock. 2012. Blueberries. CAB Intl., Oxfordshire, UK. Ruotsalainen, A.L. 2003. Mycorrhizal colonization and plant performance in arcto-alpine conditions. Ph. D dissertation. Department of Biology, University of Oulu, Finland. Ruotsalainen, A.L. 2018. Dark Septate Endophytes (DSE) in Boreal and Subarctic Forests, p.105–117. In: A.M. Pirttilä and A.C. Frank (eds.). Endophytes of Forest Trees. Springer, Heidelberg, Germany. Ruotsalainen, A.L. 2018. Dark Septate Endophytes (DSE) in Boreal and Subarctic Forests, p.105–117. In: A.M. Pirttilä and A.C. Frank (eds.). Endophytes of Forest Trees. Springer, Heidelberg, Germany. Sadowsky, J.J., E.J. Hanson, and A.M.C. Schilder. 2012. Root colonization by ericoid mycorrhizae and dark septate endophytes in organic and conventional blueberry fields in Michigan. Int. J. Fruit Sci. 12:169–187. Saito, K., Y. Kuga-Uetake, M. Saito, and R.L. Peterson. 2006. Vacuolar localization of phosphorus in hyphae of Phialocephala fortinii, a dark septate fungal root endophyte. Can. J. Microbiol. 52:643–650. Scagel, C.F. 2002. Mycorrhizal status of sand-based cranberry (Vaccinium macrocarpon) bogs in southern Oregon. Small Fruits Rev. 2:31–41. Scagel, C.F. 2005. Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars. HortScience 40:786–794. Scagel, C.F. and W. Yang. 2005. Cultural variation and mycorrhizal status of blueberry plants in nw Oregon commercial production fields. Small Fruits Rev. 5:85–111. Scagel, C.F., A. Wagner, and P. Winiarski. 2005. Frequency and intensity of root colonization by ericoid mycorrhizal fungi in nursery production of blueberry plants. Small Fruits Rev. 4:95–112. Scagel, C.F., A. Wagner, and P. Winiarski. 2005. Inoculation with ericoid mycorrhizal fungi alters root colonization and growth in nursery production of blueberry plants from tissue culture and cuttings. Small Fruit Rev. 4:113–135. Selim, K., M. Nagia, and D. Ezzat. 2016. Endophytic Fungi are Multifunctional Biosynthesizers: Ecological Role and Chemical Diversity. Endophytic Fungi: Diversity, Characterization and Biocontrol. 125–146. Selosse, M., S. Setaro, F. Glatard, F. Richard, C. Urcelay and M. Weiss. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. The New phytol. 174:864–78. Selosse, M.A., A. Faccio, G. Scappaticci, and P. Bonfante. 2004. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb. Ecol. 47:416–426. Sietio, O.M., T. Tuomivirta, M. Santalahti, H. Kiheri, S. Timonen, H. Sun, H. Fritze, and J. Heinonsalo. 2018. Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol. 218:738–751. Smagula, J. M. and W. Litten. 1989. Effect of ericoid mycorrhizae isolates on growth and development of lowbush blueberry tissue culture plantlets. Acta Hort. 241:110–114. Smith, S.E. and D. J. Read. 2008. Mycorrhizal Symbiosis (Third Edition). Academic Press. Mass., U.S.A. Spiers, J.M. 1986. Root distribution of ‘Tifblue’ rabbiteye blueberry as influenced by irrigation, incorporated peatmoss, and mulch. J. Amer. Soc. Hort. Sci. 111:877–880. Spiers, J.M. 1995. Substrate temperatures influence root and shoot growth of southern highbush and rabbiteye blueberries. Hortscience 30:1029–1030. Stafne, E.T., F.B. Matta, and T. C. Barickman. 2017. Effects of inoculation with ericoid mycorrhizal fungi on leaf nutrients of two field-grown rabbiteye blueberry cultivars. Acta Hortic. 1180:117–122. Starast, M., U. Koljalg, K. Karp, E. Vool, M. Noormets, and T. Paal. 2006. Mycorrhizal colonization of half-high blueberry cultivars influenced by cultural practices. Acta Hort. 715:449–454. Strandberg, M. and M. Johansson. 1999. Uptake of nutrients in Calluna vulgaris seed plants grown with and without mycorrhiza. For. Ecol. Manag. 114:129–135. Stribley, D.P. and D.J. Read. 1974. The biology of mycorrhiza in the Ericacsea. IV. The effect of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry Vaccinium macrocaron Ait. New Phytol. 73:1149–1155. Stribley, D.P. and D.J. Read. 1980. The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol. 86:365–371. Surono, S. and K. Narisawa. 2017. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecol. 28:1–10. Tanaka, S. T. Kobayashi, K. Iwasaki, and S. Yamane. 2003. Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Sci. Plant Nutr., 49:603–610. Tang, X., Y. Li, S. LI, W. Lin, and Z. Zhang. 2005. A comparative study of root activity and mycorrhizal infection incidence of blueberry in different soil conditions. J. Jilin Agri. Univ. 27:43–47. Taylor, D.L., T.D. Bruns, T.M. Szaro, and S.A. Hodges. 2003. Divergence inmycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am. J. Bot. 90:1168–1179. Tedersoo, L., T. Suvi, E. Larsson, and U. Kõljalg. 2006. Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol. Res. 110:734–748. Tejesvi, M., A. Ruotsalainen, A. Markkola, and A.M. Pirttilä. 2010. Root endophytes along a primary succession gradient in northern Finland. Fungal Diversity 41:125–134. Thormann, M.N. 2006. The role of fungi in boreal peatlands, p.101–123. In R.K. Wiederand and D.H. Vitt (eds.). Boreal Peatland Ecosystems. Springer, Berlin, Germany. Thormann, M.N. and A.V. Rice. 2007. Fungi from peatlands. Fungal diversity 24:241–299. Thormann, M.N., R.S. Currah, and S.E. Bayley. 1999. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450. Trevors, J.T. 1996. Sterilization and inhibition of microbial activity in soil. J. Microbiol. Methods 26:53–59. Tsuneda, A., M.N. Thormann, and R.S. Currah. 2001. Modes of cell wall degradation of Sphagnum fuscum by Acremonium cf. curvulum and Oidiodendron maius. Can. J. Bot. 79:93–100. Usuki, F. and K. Narisawa. 2007. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184. Vano, I., S. Kazunori, and I. Kazuyuki. 2010. Selection of dark septate endophytes from Ericaceae plants to enhance blueberry (Vaccinium corymbosum L.) seedling growth. Soil Soln. Changing World. 2010 19th World Congr. Soil Sci. p. 123–126. Villarreal-Ruiz, L., I.C. Anderson, and I.J. Alexander. 2004. Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium New Phytol. 164:183–192. Vohník, M, J. Albrechtová, and M. Vosátka. 2008. The application of inocula based on ericoid mycorrhizal, DSE and saprotrophic fungi in conventional, semi-conventional, semi-organic and organic cultivation of highbush blueberries, p. 100–111. In: F. Feldmann and Y. Kapulnik (eds.). Mycorrhiza Works. Phytomedizinische Gesellschaft, Braunschweig, Germany. Vohník, M. and J. Albrechtová. 2011. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European rhododendron species. Folia Geobot. 46:378–386. Vohník, M., J. Albrechtová, and M. Vosátka. 2005. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis. 40:87–96. Vohník, M., L. Mrnka, T. Lukešová, M.C. Bruzone, P. Kohou, and J. Fehrerd. 2013. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 6:281–292. Vohník, M.S. Lukančič, E. Bahor, M. Regvar, M. Vosátka, and D. Vodnik. 2003. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot. 38:191–200. Vrålstad, T., E. Myhre, and T. Schumacher. 2002. Molecular diversity and phylogenetic affinities of symbiotic rootassociated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol. 155:131–148. Wang, C.J.K. and H.E Wilcox. 1985. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophorn finlnnrlin, Chloridiurn pnucisporurn and Phinlocephala fortinii. Mycologia 77:951–958. Wu, J. and X. Lin. 2003. Effects of soil microbes on plant growth. Soil 35:18–21. Yang, H., X. Zhao, C. Liu, L. Bai, M. Zhao, and L. Li. 2018. Diversity and characteristics of colonization of root-associated fungi of Vaccinium uliginosum. Sci. Rep. 8:1–14. Yang, W.Q. B.L. Goulart, K. Demchak, and Y. Li. 2002. Interactive effects of mycorrhizal inoculation and organic soil amendments on nitrogen acquisition and growth of highbush blueberry. J Am. Soc. Hortic. Sci. 127:742–748. Zhang, Y.H. and W.Y. Zhuang. 2004. Phylogenetic relationships of some members in the genus Hymenoscyphus (Ascomycetes, Helotiales). Nova Hedwigia 78:475–484. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58006 | - |
dc.description.abstract | 芬蘭進口之酸性泥炭苔為臺灣種植兔眼藍莓(Vaccinium virgatum Ait.)常用之栽培介質,除具有降低介質pH值之功能外,其商品標示指出,介質中含有天然微生物,可以促進養分利用。本論文調查以芬蘭酸性泥炭苔栽培的兔眼藍莓盆苗,根系共生真菌侵染型態及侵染率,評估泥炭苔內之真菌種類及兔眼藍莓品種與共生真菌之專一性,並進一步探討芬蘭泥炭苔所含之共生真菌對兔眼藍莓幼苗生長之影響,以及肥料種類對共生真菌侵染率之影響。 試驗一調查以芬蘭酸性泥炭苔為介質之十個兔眼藍莓品種盆苗,根部內真菌侵染型態及侵染率。所有品種皆同時有杜鵑花類菌根菌(ericoid mycorrhizal fungi, EMF)及暗色隔膜內生菌(dark septate endophytes, DSE)兩類真菌共生,其中‘Austin’之總侵染頻率及強度最低;‘NTU-104’總侵染頻率最高,而‘Climax’總侵染強度最高,結果顯示芬蘭酸性泥炭苔可做為EMF及DSE之接種源。又根據真菌侵染型態及泥炭地可能所含真菌之文獻推測,泥炭苔中EMF應為Rhyzoscyphus ericae、Oidiodendron maius 或Meliniomyces variabilis,DSE應為Phialocephala fortinii。 試驗二使用兔眼藍莓‘NTU-104’扦插苗作為植物材料,將已產生癒傷組織但尚未發根之扦插枝條分別種植於滅菌(sterilized peat mosses, SP)或未滅菌(unsterilized peat mosses, UP)之含泥炭苔介質中,調查扦插苗之營養生長勢、植體元素含量及濃度、介質pH值及EC值。扦插四個月後,UP組植株具較高真菌侵染率及植體元素含量,以及較佳之植株生長勢;介質可溶性養分含量較高且pH值較低。結果證明使用天然芬蘭酸性泥炭苔作為接種源,可以使兔眼藍莓扦插幼苗與EMF及DSE共生,並促進幼苗之生長。 試驗三使用含芬蘭泥炭苔介質栽培之兔眼藍莓‘NTU-104’盆苗,以有機肥料(organic fertilizer, OF)、控釋型肥料(control-released fertilizer, CF)及即溶複合肥料(instant compound fertilizer, IF)進行不同之施肥處理。試驗結束時,CF植株的營養生長狀況較IF及OF植株佳。所有植株在施肥處理60日後,共生真菌之侵染率皆大幅降低。OF、CF及IF介質平均pH值分別為4.47、4.33和4.31。OF、CF及IF介質平均EC值分別為149.53、227.40和286.69 μS·cm-1。推測兔眼藍莓移植至田間栽培後,宿主真菌專一性、栽培方式、環境條件及真菌適應力皆可能為導致真菌侵染率下降之原因。 | zh_TW |
dc.description.abstract | In Taiwan, native Finnish peat mosses are a recommended subtrate to lower the substrate acidity for growing blueberries (Vaccinium spp.). In addition, beneficial microbes in the peat mosse as labeled on the commercial product may also promote plant growth. In this thesis, the fungal colonization morphology and colonization rate of rabbiteye blueberries (V. virgatum Ait.) cultivated with native Finnish peat mosses were investigated to document fungal types and fungus-host specificity. This thesis also tested the effect of using native Finnish peat mosses as inoculum on the growth of rabbiteye blueberry cuttings, and the effect of different fertilization treatments on symbiotic fungal colonization. In experiment one, fungal colonization morphology and clolonization rates of ten blueberry cultivars were investigated. All investigated cultivars were colonized by ericoid mycorrhizal fungi (EMF) and dark septate endophytes (DSE). Total colonization frequency and intensity in ‘Austin’ were the lowest among the tested cultivars; Total colonization frequency of ‘NTU-104’ was the highest; Total colonization intensity of ‘Climax’ was the highest. The result indicates that Finnish native peat mosses are efficient symbiotic fungal inoculum of EMF and DSE. Based on the fungal colonization morphology and the literatures about possible fungi in peatlands, the EMF in Finnish peat mosses could be Rhyzoscyphus ericae, Oidiodendron maius or Meliniomyces variabilis. The DSE could be Phialocephala fortinii. In experiment two, rabbiteye blueberry ‘NTU-104’ cuttings with callus formed were tranplanted to either sterilized (SP) or unsterilized (UP) medium containing peat mosses. Vegetative growth, plant element content and concentration, medium pH and EC were investigated. Four months after transplating, higher total colonization rates, plant element contents, and greater vegetative growth was recorded in UP plants than in SP plants. UP medium had higher soluble nutrient content but lower pH then SP medium. The results indicated that native Finnish peat moss as a symbiotic fungi inoculum was capable of colonizing and promoting vegetative growth in rabbiteye blueberry cuttings. In experiment three, rabbiteye blueberry ‘NTU-104’ cultivated in subtrate containing Finnish peat moss were subjected to three fertilization treatments, organic fertilizer (OF), control-released fertilizer (CF) and instant compound fertilizer (IF). By the end of the experiment period, CF plants had better vegetative growth than IF and OF plants. The fungal colonization rates of all treatments declined substantially at 60 days after fertilization treatment. The value of subtrate pH of OF, CF and IF was 4.47, 4.33 and 4.31, respectively, and the EC of OF, CF and IF medium was 149.53, 227.40, and 286.69 μS·cm-1, repectively. The host-fungus specificity, cultivation mode, environmental conditions, and adaptability of fungi might be the reasons that causing low fungal clonization rate after transplanting. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:04:27Z (GMT). No. of bitstreams: 1 U0001-1507202017131700.pdf: 2452040 bytes, checksum: 03effc156960cc5d32906f6d956a7baa (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract v 目 錄 vii 表目錄 xi 圖目錄 xii 第一章 總論-前人研究及試驗假說 1 1.1 前言 1 1.2 藍莓之共生真菌 2 1.2.1 杜鵑花類菌根菌 2 1.2.1.1 杜鵑花類菌根菌之分類 2 1.2.1.2 杜鵑花類菌根菌之生態地位 3 1.2.1.3 杜鵑花類菌根菌之養分吸收功能 4 1.2.1.4 杜鵑花類菌根菌之侵染型態 4 1.2.1.5 杜鵑花類菌根菌之共生宿主 5 1.2.1.6 杜鵑花類菌根菌對宿主植物生長之影響 5 1.2.2 暗色隔膜內生菌 6 1.2.2.1 暗色隔膜內生菌之分類 6 1.2.2.2 暗色隔膜內生菌之生態地位 7 1.2.2.3 暗色隔膜內生菌之養分吸收功能 8 1.2.2.4 暗色隔膜內生菌之侵染型態 8 1.2.2.5 暗色隔膜內生菌之共生宿主 9 1.2.2.6 暗色隔膜內生菌對宿主植物生長之影響 9 1.3 泥炭苔內之真菌 11 1.3.1 泥炭地之分類及生態地位 11 1.3.2 泥炭苔所含之真菌 11 1.3.2.1 泥炭苔中能與杜鵑花科植物共生之真菌 11 1.3.2.2 芬蘭泥炭苔中能與杜鵑花科植物共生之杜鵑花類菌根菌 12 1.3.2.3 芬蘭泥炭苔中能與杜鵑花科植物共生之暗色隔膜內生菌 12 1.4 論文架構及試驗假說 13 1.5 參考文獻 14 第二章 天然芬蘭泥炭苔內之共生真菌侵染之探討 25 2.1 摘要 25 2.2 前言 26 2.3 材料與方法 27 2.3.1 試驗地點及植物材料 27 2.3.2 肥培及病蟲害管理 27 2.3.3 環境資料 28 2.3.4 共生真菌侵染型態觀察 28 2.3.5 共生真菌侵染率調查 29 2.3.5 統計分析 29 2.4 結果 29 2.4.1 兔眼藍莓盆苗之共生真菌侵染型態 29 2.4.2 兔眼藍莓盆苗之共生真菌侵染率 30 2.5 討論 35 2.6 結論 37 2.7 參考文獻 37 第三章 芬蘭泥炭苔所含之內生真菌對兔眼藍莓生長之影響 40 3.1 摘要 40 3.2 前言 41 3.3 材料與方法 42 3.3.1 試驗地點及植物材料 42 3.3.2 介質滅菌處理 42 3.3.3 肥培及病蟲害管理 42 3.3.4 環境資料 43 3.3.5營養生長情形 43 3.3.6 介質pH及EC值調查 43 3.3.7共生真菌種類及侵染率調查 43 3.3.8植體元素分析 44 3.3.9 統計分析 45 3.4 結果 45 3.5 討論 64 3.6 結論 68 3.7 參考文獻 68 第四章 肥料種類對兔眼藍莓真菌侵染率之影響 73 4.1 摘要 73 4.2 前言 74 4.3 材料與方法 75 4.3.1 試驗地點及植物材料 75 4.3.2 肥料施用處理 75 4.3.3 環境資料 76 4.3.4 兔眼藍莓營養生長情形 76 4.3.5 介質pH及EC值調查 76 4.3.6 兔眼藍莓共生真菌種類及侵染率調查 77 4.3.7 統計分析 77 4.4 結果 77 4.4.1 植株營養生長情形 77 4.4.2 介質pH值及電導度 78 4.4.3 共生真菌侵染率 78 4.5 討論 93 4.6 結論 97 4.7 參考文獻 98 第五章 綜合討論及未來研究方向 101 5.1 參考文獻 102 附錄 103 | |
dc.language.iso | zh-TW | |
dc.title | 泥炭苔作為共生真菌接種源促進兔眼藍莓(Vaccinium virgatum Aiton)扦插苗之生長 | zh_TW |
dc.title | Peat Moss as an Inoculum of Symbiotic Fungi Promoted the Growth in Rabbiteye Blueberry (Vaccinium virgatum Aiton) Cuttings | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李金龍(Ching-Lung Li),張哲嘉(Jer-Chia Chang),陳香君(Shiang-Jiuun Chen) | |
dc.subject.keyword | 泥炭苔,杜鵑花類菌根菌,暗色隔膜內生菌,專一性,真菌侵染率,營養生長,植體元素含量,有機肥料,化學肥料, | zh_TW |
dc.subject.keyword | peat mosses,ericoid mycorrhizal fungi,dark septate endophytes,specificity,fungal colonization rate,vegetative growth,plant element content,organic fertilizer,chemical fertilizer, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU202001551 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1507202017131700.pdf 目前未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。