Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁肇隆(Chao-Lung Ting)
dc.contributor.authorChin-Sheng Changen
dc.contributor.author張勤昇zh_TW
dc.date.accessioned2021-06-16T08:04:14Z-
dc.date.available2019-07-08
dc.date.copyright2014-07-08
dc.date.issued2014
dc.date.submitted2014-07-01
dc.identifier.citation[1]G. Shroff, A. Smailagic, and D. P. Siewiorek, 'Wearable context-aware food recognition for calorie monitoring,' in Wearable Computers, 2008. ISWC 2008. 12th IEEE International Symposium on, 2008, pp. 119-120.
[2]M. Chen, K. Dhingra, W. Wu, L. Yang, and R. Sukthankar, 'PFID: Pittsburgh fast-food image dataset,' in Image Processing (ICIP), 2009 16th IEEE International Conference on, 2009, pp. 289-292.
[3]D. G. Lowe, 'Distinctive image features from scale-invariant keypoints,' International journal of computer vision, vol. 60, pp. 91-110, 2004.
[4]C.-C. Chang and C.-J. Lin, 'LIBSVM: a library for support vector machines,' ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, p. 27, 2011.
[5]M.-Y. Chen, Y.-H. Yang, C.-J. Ho, S.-H. Wang, S.-M. Liu, E. Chang, et al., 'Automatic Chinese food identification and quantity estimation,' in SIGGRAPH Asia 2012 Technical Briefs, 2012, p. 29.
[6]T. Ojala, M. Pietikainen, and D. Harwood, 'Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,' in Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on, 1994, pp. 582-585.
[7]T. Ojala, M. Pietikainen, and T. Maenpaa, 'Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, pp. 971-987, 2002.
[8]T. P. Weldon, W. E. Higgins, and D. F. Dunn, 'Efficient Gabor filter design for texture segmentation,' Pattern Recognition, vol. 29, pp. 2005-2015, 1996.
[9]D. Pishva, K. Hirakawa, A. Kawai, and T. Shiino, 'A unified image segmentation approach with application to bread recognition,' in Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on, 2000, pp. 840-844.
[10]D. Pishva, A. Kawai, and T. Shiino, 'Shape based segmentation and color distribution analysis with application to bread recognition,' in IAPR Workshop on Machine Vision Applications, 2000, pp. 193-196.
[11]I. Ahn, M. M. Zo, and C. Kim, 'A robust bread defect detection and counting system,' in Advanced Communication Technology, 2009. ICACT 2009. 11th International Conference on, 2009, pp. 1315-1320.
[12]M.-K. Hu, 'Visual pattern recognition by moment invariants,' Information Theory, IRE Transactions on, vol. 8, pp. 179-187, 1962.
[13]T.-H. Sun, 'K-Cosine Corner Detection,' Journal of Computers, vol. 3, 2008.
[14]M. Piccardi, 'Background subtraction techniques: a review,' in Systems, man and cybernetics, 2004 IEEE international conference on, 2004, pp. 3099-3104.
[15]N. Otsu, 'A threshold selection method from gray-level histograms,' Automatica, vol. 11, pp. 23-27, 1975.
[16]N. Kazakova, M. Margala, and N. G. Durdle, 'Sobel edge detection processor for a real-time volume rendering system,' in Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on, 2004, pp. II-913-16 Vol. 2.
[17]R. C. Gonzalez and R. E. Woods, 'Digital image processing,' Prentice Hall, pp. 299-300, 2002.
[18]T. Kato, 'Database architecture for content-based image retrieval,' in SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, 1992, pp. 112-123.
[19]A. R. Smith, 'Color gamut transform pairs,' in ACM Siggraph Computer Graphics, 1978, pp. 12-19.
[20]D. H. Douglas and T. K. Peucker, 'Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,' Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 10, pp. 112-122, 1973.
[21]J. R. Quinlan, 'Induction of decision trees,' Machine learning, vol. 1, pp. 81-106, 1986.
[22]C. E. Shannon, 'A mathematical theory of communication,' ACM SIGMOBILE Mobile Computing and Communications Review, vol. 5, pp. 3-55, 2001.
[23]Z. Zivkovic, 'Improved adaptive Gaussian mixture model for background subtraction,' in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, pp. 28-31.
[24]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., 'The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,' Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
[25]D. Zhang and G. Lu, 'Review of shape representation and description techniques,' Pattern recognition, vol. 37, pp. 1-19, 2004.
[26]S. Loncaric, 'A survey of shape analysis techniques,' Pattern recognition, vol. 31, pp. 983-1001, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57990-
dc.description.abstract現今市場上大多數商品結帳系統都採用掃描條碼(barcode)的方式來進行,然而針對生鮮食品諸如肉品、海鮮及蔬菜等,無法輕易貼上條碼之產品,往往需要增添額外人工流程來協助結帳。然而麵包因新鮮出爐具有高溫,包裝易有水氣,為求提升賣相之考量,通常不會額外包裝,也就無法輕易貼上條碼。因此透過影像處理是一個很好的解決方案,利用相機直接擷取麵包影像,經由辨識系統來識別產品,不僅能保存麵包原始樣貌,更可以提高結帳流程效率。
因此本論文提出一個基於圖像內容特徵與決策樹分類的麵包辨識系統,透過數位相機或視訊攝影機鏡頭拍攝麵包,以影像處理方式設計系統,希望藉由自動化流程,來提升目前人工結帳效率。本研究主要由三大流程所構成:麵包影像前處理、圖像內容特徵擷取和決策樹分類演算法。首先透過影像前處理來進行前景(麵包)與背景分離,處理成二值化影像,並擷取影像上的圖像內容特徵,包含基本幾何色彩特徵與轉折點偵測等形狀特徵,後續統計特徵極值範圍,進行範圍比對以切割分區,並搭配信息熵理論,計算熵值(Entropy)挑選最佳屬性,以產生決策樹分類樣式。經由實驗顯示本研究針對48種麵包進行分類測試(每種以30個樣本進行訓練,以10個樣本進行測試),結果具備有93.75%的辨識率,可提升結帳效率並降低人力資源成本。未來此架構流程可應用於物件辨識(Object Recognition)領域。
zh_TW
dc.description.abstractNowadays most merchandise checkout systems are used by way of scanning each items barcode. However, fresh food such as meat, seafood, bread, and vegetables cannot be scanned as easily since they usually do not come with a barcode. The handling of these products often require a clerk’s assistance. For example, fresh bread that is being cooled cannot be stored in the plastic bags right away, therefore making it difficult to attach a barcode label to the item. As a result, an image processing aided system would be a suitable solution to assist with issues related to barcode labeling, while also helping to improve overall checkout efficiency.
In this thesis, we propose an intelligent bread recognition system (IBRS) by using photographic equipment to capture bread images. The system includes three main modules: original image preprocessing, content-based feature extraction and decision tree classification. The input images will be first segmented and processed into binary images. Then, the geometry, color, and shape feature will be extracted from the preprocessed images. After that, the extreme range of features will be analyzed, and the best attribute will be chosen through calculating the entropy. Finally, the system will generate a decision tree classification model, which will then be used to identify the input bread images. The experiment indicates that the classification for 48 kinds of bread samples resulted in 93.75% accuracy. Each test used 30 samples for training and 10 samples for testing. As a result, our system can enhance checkout efficiency and reduce labor costs. In the future, the process architecture can be applied to Objection Recognition field.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:04:14Z (GMT). No. of bitstreams: 1
ntu-103-R01525051-1.pdf: 6536580 bytes, checksum: c44cb8d82c783e177920a44b58fd7958 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
論文目錄 v
圖目錄 vii
表目錄 x
第一章、緒論 1
1.1 研究動機與目的 1
1.2 相關研究 2
1.3 論文架構 4
第二章、影像前處理 6
2.1 目標物體擷取 6
2.1.1 背景相減法 7
2.1.2 Otsu自動門檻法 8
2.1.3 Sobel 邊緣偵測法 12
2.2 影像形態學處理 14
2.3 二值化方法比較與切換流程 18
第三章、特徵擷取 23
3.1 基本幾何特徵 24
3.2 色彩空間特徵 27
3.3 K-cosine曲率法轉折點偵測 30
3.4 Douglas Peucker多邊形近似法 34
第四章、決策樹分類 38
4.1 統計特徵極值範圍 39
4.2 切割分區與選擇屬性 42
4.3 建構決策樹模型 47
第五章、實驗結果與討論 49
5.1 實驗設備環境與樣本資料庫 49
5.2 系統實作與結果 51
5.2.1 資料庫訓練模組 51
5.2.2 即時辨識模組 54
5.3 實驗辨識結果 58
5.3.1 同個物體之訓練信賴值驗證 58
5.3.2 同種物體之訓練信賴值驗證 59
第六章、結論與未來展望 61
參考文獻 63
附錄一 66
附錄二 69
附錄三 71
dc.language.isozh-TW
dc.title基於圖像內容特徵與決策樹之麵包辨識系統zh_TW
dc.titleContent-based Feature and Decision Tree for Bread Recognition Systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor張瑞益(Ray-I Chang)
dc.contributor.oralexamcommittee呂承諭,王家輝,劉星劭
dc.subject.keyword麵包辨識,影像前處理,圖像內容特徵擷取,決策樹分類,zh_TW
dc.subject.keywordBread recognition,Image preprocess,Feature extraction,Decision tree classification,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2014-07-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved