Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥(Jaw-Yen Yang)
dc.contributor.authorTing-Lin Weien
dc.contributor.author魏廷霖zh_TW
dc.date.accessioned2021-06-16T07:08:11Z-
dc.date.available2017-07-15
dc.date.copyright2014-07-15
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citation[1] J. Bourgat, P. Le Tallec, B. Perthame, and Y. Qiu, 'Coupling Boltzmann and Euler equations without overlapping,' Contemporary Mathematics, vol. 157, pp. 377-377, 1994.
[2] J.-F. Bourgat, P. Le Tallec, and M. D. Tidriri, 'Coupling Boltzmann and Navier-Stokes equations by friction,' 1995.
[3] P. Le Tallec and F. Mallinger, 'Coupling Boltzmann and Navier–Stokes equations by half fluxes,' Journal of Computational Physics, vol. 136, pp. 51-67, 1997.
[4] N. Crouseilles, P. Degond, and M. Lemou, 'A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann–BGK equation,' Journal of Computational Physics, vol. 199, pp. 776-808, 2004.
[5] P. Degond, S. Jin, and L. Mieussens, 'A smooth transition model between kinetic and hydrodynamic equations,' Journal of Computational Physics, vol. 209, pp. 665-694, 2005.
[6] P. Degond, G. Dimarco, and L. Mieussens, 'A moving interface method for dynamic kinetic–fluid coupling,' Journal of Computational Physics, vol. 227, pp. 1176-1208, 2007.
[7] P. L. Bhatnagar, E. P. Gross, and M. Krook, 'A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,' Physical Review, vol. 94, p. 511, 1954.
[8] E. A. Uehling and G. Uhlenbeck, 'Transport phenomena in Einstein-Bose and Fermi-Dirac gases. i,' Physical Review, vol. 43, p. 552, 1933.
[9] J.-Y. Yang, T.-Y. Hsieh, and Y.-H. Shi, 'Kinetic flux vector splitting schemes for ideal quantum gas dynamics,' SIAM Journal on Scientific Computing, vol. 29, pp. 221-244, 2007.
[10] J.-Y. Yang, T.-Y. Hsieh, Y.-H. Shi, and K. Xu, 'High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics,' Journal of Computational Physics, vol. 227, pp. 967-982, 2007.
[11] B. P. Muljadi and J.-Y. Yang, 'A direct Boltzmann-BGK equation solver for arbitrary statistics using the conservation element/solution element and discrete ordinate method,' in Computational Fluid Dynamics 2010, ed: Springer, 2011, pp. 637-642.
[12] B. P. Muljadi and J.-Y. Yang, 'Direct Solver in Cartesian and Generalized Coordinate Systems for Solving Rarefied Flows of Gases of Arbitrary Statistics,' in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.
[13] J.-Y. Yang and B. P. Muljadi, 'Simulation of Shock Wave Diffraction over 90° Sharp Corner in Gases of Arbitrary Statistics,' Journal of Statistical Physics, vol. 145, pp. 1674-1688, 2011.
[14] 蔡昀達, '半古典波茲曼方程與尤拉方程耦合之稀薄流模擬,' 臺灣大學應用力學研究所學位論文, 2013.
[15] G. Chen, 'Nanoscale energy transport and conversion,' ed: Oxford University Press, New York, 2005.
[16] G. Bird, 'Molecular gas dynamics and the direct simulation monte carlo of gas flows,' Clarendon, Oxford, vol. 508, 1994.
[17] H. Struchtrup, Macroscopic transport equations for rarefied gas flows: Springer, 2005.
[18] Y.-H. Shi and J. Y. Yang, 'A gas-kinetic BGK scheme for semiclassical Boltzmann hydrodynamic transport,' Journal of Computational Physics, vol. 227, pp. 9389-9407, 2008.
[19] J.-Y. Yang, B. P. Muljadi, S.-Y. Chen, and Z.-H. Li, 'Kinetic numerical methods for solving the semiclassical Boltzmann-BGK equation,' Computers & Fluids, vol. 85, pp. 153-165, 2013.
[20] J. Yang and J. Huang, 'Rarefied flow computations using nonlinear model Boltzmann equations,' Journal of Computational Physics, vol. 120, pp. 323-339, 1995.
[21] G.-S. Jiang and C.-W. Shu, 'Efficient implementation of weighted ENO schemes,' Journal of Computational Physics, vol. 126, pp. 202-228, 1996.
[22] R. J. LeVeque, Numerical methods for conservation laws vol. 132: Springer, 1992.
[23] C.-W. Shu and S. Osher, 'Efficient implementation of essentially non-oscillatory shock-capturing schemes,' Journal of Computational Physics, vol. 77, pp. 439-471, 1988.
[24] P. K. Sweby, 'High resolution schemes using flux limiters for hyperbolic conservation laws,' SIAM journal on numerical analysis, vol. 21, pp. 995-1011, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57863-
dc.description.abstract在本研究當中求解半古典波茲曼BGK模型方程式(Semiclassical Boltzmann Bhatnagar-Gross-Krook),使用Maxwell-Boltzmann, Fermi-Dirac和 Bose-Einstein三種不同統計,模擬量子氣體流場。並且使用將微觀尺度方程式與巨觀尺度方程式耦合的模型,該方法是藉由定義截斷函數,建立平滑轉換區於兩不同尺度的方程式之間。在平滑轉換區內,將速度分布函數由截斷函數分解成一個耦合方程組,其中一方程式投影至尤拉極限。平滑緩衝區內的解答,即為該耦合方程組的兩條方程式所求解出的分布函數相加而得。在本文當中考慮線性、餘弦和雙曲函數三種不同的截斷函數,測試不同截斷函數轉換的效果。藉由定義截斷函數,可以簡易的決定於哪一流域求解巨觀方程式、微觀方程式或者將兩者耦合的平滑轉換區。與過往的多尺度耦合方法相比,無須考慮兩尺度方程式之間交界面的邊界條件。在數值方法的部分,本文使用離散座標法,將速度空間從速度分布函數之中獨立出來,使得原半古典波茲曼BGK模型方程式於相空間成為數組具有源項的雙曲線型守恆律方程式。在物理空間部分,使用全變量消逝法和加權型基本不振盪法兩種高解析算則計算。本文中模擬數種量子氣體測試平滑緩轉換區之效果,包含一維震波管問題、二維非穩態震波繞射方柱及穩態流場流過圓柱之流場問題。各算例測試中平滑緩衝區表現良好,可做為多尺度問題耦合法使用。zh_TW
dc.description.abstractThis study solves Semiclassical Boltzmann-BGK equation (also called Uehling – Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook equation) with Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics which allows us to simulate quantum gas flow problem. In this work, we also implement a buffering zone model which provides a smooth transition between a kinetic and a hydrodynamic domain. The idea is to use buffer zone splitting the velocity distribution function into two coupled equations by cut-off function. The solution will be recovered as the sum of the two coupled equations. We can easily determine to solve kinetic, hydrodynamic or coupled equations via cut function. Three types of cut-function, linear, cosine and hypertangent, are considered in this article. The idea of buffer zone can avoid issue of interface boundary condition between macroscopic and microscopic equation. For numerical parts, we use discrete ordinate method to remove the velocity space dependency of the velocity distribution function which renders Boltzmann equation in phase space to a set of hyperbolic conservation laws with source terms in physical space. High resolution schemes, Total Variation Diminishing (TVD) and Weighted Essentially Non-Oscillatory (WENO), are applied to physical space. Several semiclassical gas flow problems including 1-D shock tube problem, 2-D unsteady shock wave impinging upon a square cylinder and steady flow over a cylinder have been simulated to test the buffer zone treatment. Buffer zone performed well in each test problem. It can be implemented in Multi-scale coupling method successfully.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:08:11Z (GMT). No. of bitstreams: 1
ntu-103-R01543008-1.pdf: 3774727 bytes, checksum: 5d60c5022cdb79b229eaea3fdb7684ca (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
符號表 vii
圖目錄 ix
第一章 緒論 1
1.1 引言 1
1.1 文獻回顧 2
1.2 研究目的與動機 3
1.3 本文架構 4
第二章 波茲曼方程式 5
2.1 稀薄氣體動力學 5
2.2 速度分布函數與巨觀量 7
2.3 波茲曼方程式 9
2.4 BGK模型 12
2.5 連續體模型 13
2.6 固體壁面邊界條件 15
第三章 半古典波茲曼方程式 17
3.1 理想量子氣體 17
3.2 半古典波茲曼方程式 19
3.3 半古典粒子運動模型 20
第四章 數值方法 24
4.1 離散座標法 24
4.2 離散座標法之應用 26
4.3 高解析算則 27
4.3.1 全變量消逝算則 28
4.3.2 加權型基本不振盪算則 29
4.4 時間與空間離散 32
4.4.1 全變量消逝法算則之應用 32
4.4.2 加權型基本不振盪算則之應用 33
4.5 廣義坐標系 35
4.6 無因次化 37
第五章 平滑轉換區 39
5.1 波茲曼BGK模型與波茲曼BGK模型方程式耦合 39
5.2 波茲曼BGK模型與尤拉方程式耦合 42
第六章 數值模擬結果與討論 46
6.1 一維量子氣體問題 46
6.2 二維量子氣體問題 47
6.2.1 方柱非穩態流場算例 47
6.2.2 圓柱穩態流場算例 50
第七章 結論與未來展望 85
7.1 結論 85
7.2 展望 86
參考文獻 87
dc.language.isozh-TW
dc.title使用平滑轉換區於半古典跨流域稀薄氣體模擬zh_TW
dc.titleSemiclassical Cross-Regime Rarefied Gas Flow Simulations Using Smooth Transition Zoneen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡尚熹(Shang-Hsi Tsai),陳旻宏(Min-Hung Chen),洪鉦杰(Cheng-Chieh Hung),謝澤揚(Tse-Yang Hsieh)
dc.subject.keyword半古典波茲曼BGK模型方程式,多尺度問題耦合法,平滑轉換區,尤拉極限,zh_TW
dc.subject.keywordSemiclassical Boltzmann-BGK equation,Multi-scale coupling method,Euler limit,Buffer zone,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2014-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved