請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57854
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍(Jiang-Jen Lin) | |
dc.contributor.author | Yi-Hsiu Huang | en |
dc.contributor.author | 黃詣琇 | zh_TW |
dc.date.accessioned | 2021-06-16T07:07:37Z | - |
dc.date.available | 2019-08-11 | |
dc.date.copyright | 2014-08-11 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-09 | |
dc.identifier.citation | 1. Kreyling, W. G.; Semmler-Behnke, M.; Chaudhry, Q., A complementary definition of nanomaterial. Nano Today 2010, 5, (3), 165-168.
2. Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic potential of materials at the nanolevel. Science 2006, 311, (5761), 622-7. 3. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009, 27, (1), 76-83. 4. Su, S.; Wu, W.; Gao, J.; Lu, J.; Fan, C., Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry 2012, 22, (35), 18101. 5. Huang, P. L.; Kuo, H.-H.; Dong, R.-X.; Hsieh, B.-Z.; Huang, S.-H.; Hong, S.-F.; Shih, P.-T.; Yeh, C.-Y.; Lin, G.-R.; Lin, J.-J.; Cheng, W.-H., Performance of Graphene Mediated Saturable Absorber on Stable Mode-Locked Fiber Lasers Employing Different Nano-Dispersants. Journal of Lightwave Technology 2012, 30, (21), 3413-3419. 6. Leary, R.; Westwood, A., Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, (3), 741-772. 7. Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-h.; Lin, J.-J., Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances 2013, 3, (20), 7392. 8. Shirwaiker, R. A.; Samberg, M. E.; Cohen, P. H.; Wysk, R. A.; Monteiro-Riviere, N. A., Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013, 5, (3), 191-204. 9. Alexandre, M.; Dubois, P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 2000, 28, (1-2), 1-63. 10. Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38, (15), 6240-6243. 11. Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C., First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. J Phys Chem B 2006, 110, (37), 18115-20. 12. Li, P. R.; Wei, J. C.; Chiu, Y. F.; Su, H. L.; Peng, F. C.; Lin, J. J., Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces 2010, 2, (6), 1608-13. 13. Wei, J.-C.; Yen, Y.-T.; Su, H.-L.; Lin, J.-J., Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. The Journal of Physical Chemistry C 2011, 115, (38), 18770-18775. 14. Liang, J. J.; Wei, J. C.; Lee, Y. L.; Hsu, S. H.; Lin, J. J.; Lin, Y. L., Surfactant- modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J Virol 2014, 88, (8), 4218-28. 15. Gopal, J.; Manikandan, M.; Hasan, N.; Lee, C. H.; Wu, H. F., A comparative study on the mode of interaction of different nanoparticles during MALDI-MS of bacterial cells. J Mass Spectrom 2013, 48, (1), 119-27. 16. Rai, M. K.; Deshmukh, S. D.; Ingle, A. P.; Gade, A. K., Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012, 112, (5), 841-52. 17. Norowski, P. A., Jr.; Bumgardner, J. D., Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 2009, 88, (2), 530-43. 18. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H., Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, (1), 95-101. 19. Lara, H. H.; Garza-Trevino, E. N.; Ixtepan-Turrent, L.; Singh, D. K., Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 2011, 9, 30. 20. Hossain, F.; Perales-Perez, O. J.; Hwang, S.; Roman, F., Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 2014, 466-467, 1047-59. 21. Marambio-Jones, C.; Hoek, E. M. V., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 2010, 12, (5), 1531-1551. 22. Lin, J.-J.; Dong, R.-X.; Tsai, W.-C., High Surface Clay-Supported Silver Nanohybrids. 2010. 23. Pillai, Z. S.; Kamat, P. V., What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? The Journal of Physical Chemistry B 2004, 108, (3), 945-951. 24. Li, H.; Xia, H.; Ding, W.; Li, Y.; Shi, Q.; Wang, D.; Tao, X., Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir 2014, 30, (9), 2498-504. 25. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R., Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006, 110, (33), 16248-53. 26. Tatarchuk, V. V.; Sergievskaya, A. P.; Korda, T. M.; Druzhinina, I. A.; Zaikovsky, V. I., Kinetic Factors in the Synthesis of Silver Nanoparticles by Reduction of Ag+with Hydrazine in Reverse Micelles of Triton N-42. Chemistry of Materials 2013, 25, (18), 3570-3579. 27. Martinez-Castanon, G. A.; Nino-Martinez, N.; Loyola-Rodriguez, J. P.; Patino-Marin, N.; Martinez-Mendoza, J. R.; Ruiz, F., Synthesis of silver particles with different sizes and morphologies. Materials Letters 2009, 63, (15), 1266-1268. 28. Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Xie, T.; Wang, D.; Guo, C.; Zhao, J.; Zhu, H., Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chemistry 2010, 12, (3), 414. 29. Hornebecq, V.; Antonietti, M.; Cardinal, T.; Treguer-Delapierre, M., Stable Silver Nanoparticles Immobilized in Mesoporous Silica. Chemistry of Materials 2003, 15, (10), 1993-1999. 30. Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P.; Kang, H.-D., Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group. Radiation Physics and Chemistry 2003, 67, (3-4), 517-521. 31. Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. The Journal of Physical Chemistry B 2000, 104, (39), 9111-9117. 32. Yu, D. G., Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 2007, 59, (2), 171-8. 33. Dorjnamjin, D.; Ariunaa, M.; Shim, Y. K., Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 2008, 9, (5), 807-20. 34. Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R., Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Journal of Physical Chemistry C 2008, 112, (15), 5825-5834. 35. Li, X.; Lenhart, J. J., Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 2012, 46, (10), 5378-86. 36. Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 2010, 408, (5), 999-1006. 37. Wijnhoven, S. W. P.; Peijnenburg, W. J. G. M.; Herberts, C. A.; Hagens, W. I.; Oomen, A. G.; Heugens, E. H. W.; Roszek, B.; Bisschops, J.; Gosens, I.; Van De Meent, D.; Dekkers, S.; De Jong, W. H.; van Zijverden, M.; Sips, A. J. A. M.; Geertsma, R. E., Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3, (2), 109-138. 38. Hill, W. R.; Pillsbury, D. M., Argyria: The Pharmacology of Silver. 1939. 39. Castellano, J. J.; Shafii, S. M.; Ko, F.; Donate, G.; Wright, T. E.; Mannari, R. J.; Payne, W. G.; Smith, D. J.; Robson, M. C., Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 2007, 4, (2), 114-22. 40. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 2000, 52, (4), 662-668. 41. MOYER, C. A.; BRENTANO, L.; GRAVENS, D. L., Treatment of large human burns with 0.5 persent silver nitrate solution. Arch Surg 1965, 90, 812-867. 42. Atiyeh, B. S.; Costagliola, M.; Hayek, S. N.; Dibo, S. A., Effect of silver on burn wound infection control and healing: review of the literature. Burns 2007, 33, (2), 139-48. 43. Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M., Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials 2000, 16, (6), 452-455. 44. Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008, 74, (7), 2171-8. 45. Bragg, P. D.; Rainnie, D. J., The effect of silver ions on the respiratory chain of Escherichia coli. Canadian Journal of Microbiology 1974, 20, (6), 883-889. 46. Fuhrmann, G.-F.; Rothstein, A., The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochimica et Biophysica Acta (BBA) - Biomembranes 1968, 163, (3), 331-338. 47. Furr, J. R.; Russell, A. D.; Turner, T. D.; Andrews, A., Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. Journal of Hospital Infection 1994, 27, (3), 201-208. 48. Thurman, R. B.; Gerba, C. P.; Bitton, G., The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Critical Reviews in Environmental Control 1989, 18, (4), 295-315. 49. Liau, S. Y.; Read, D. C.; Pugh, W. J.; Furr, J. R.; Russell, A. D., Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in Applied Microbiology 1997, 25, (4), 279-283. 50. Miller, L. P.; McCallan, S. E. A., Fungicides, Toxic Action of Metal Ions to Fungus Spores. Journal of Agricultural and Food Chemistry 1957, 5, (2), 116-122. 51. Rahn, R. O.; Landry, L. C., Ultraviolet irradiation of nucleic acids complexed with heavy atoms-II. Phosphoresence and photodimerization of DNA complexed with Ag. Photochemistry and Photobiology 1973, 18, (1), 29-38. 52. SCHREURS, W. J. A.; ROSENBERG, H., Effect of silver ions on transport and retention of phosphate by Escherichia coli. JOURNAL OF BACTERIOLOGY, 1982, 152, 7-13. 53. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, (10), 2346-53. 54. Song, H. Y.; K.K Ko; I.H Oh; B.T Lee, Fabrication of silver nanoparticles and their antimicriobial mechanisms. European Cells and Materials 2006, 11, 58. 55. Gorna, K.; Gogolewski, S., Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)- poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res 2002, 60, (4), 592-606. 56. Hiltunen, K.; Tuominen, J.; Seppala, J. V., Hydrolysis of lactic acid based poly(ester-urethane)s. Polymer International 1998, 47, (2), 186-192. 57. Tang, Y. W.; Labow, R. S.; Santerre, J. P., Enzyme-induced biodegradation of polycarbonate polyurethanes: Dependence on hard-segment concentration. Journal of Biomedical Materials Research 2001, 56, (4), 516-528. 58. Guelcher, S. A., Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008, 14, (1), 3-17. 59. Jiang, X.; Li, J.; Ding, M.; Tan, H.; Ling, Q.; Zhong, Y.; Fu, Q., Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal 2007, 43, (5), 1838-1846. 60. Fujimoto, K. L.; Tobita, K.; Merryman, W. D.; Guan, J.; Momoi, N.; Stolz, D. B.; Sacks, M. S.; Keller, B. B.; Wagner, W. R., An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007, 49, (23), 2292-300. 61. Fujimoto, K. L.; Guan, J.; Oshima, H.; Sakai, T.; Wagner, W. R., In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007, 83, (2), 648-54. 62. Gogolewski, S.; Gorna, K., Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res A 2007, 80, (1), 94-101. 63. Gogolewski, S.; Gorna, K.; Turner, A. S., Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes. J Biomed Mater Res A 2006, 77, (4), 802-10. 64. Liljensten, E.; Gisselfalt, K.; Edberg, B.; Bertilsson, H.; Flodin, P.; Nilsson, A.; Lindahl, A.; Peterson, L., Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 2002, 13, (4), 351-9. 65. Santerre, J. P.; Woodhouse, K.; Laroche, G.; Labow, R. S., Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005, 26, (35), 7457-70. 66. Tseng, H. J.; Lin, J. J.; Ho, T. T.; Tseng, S. M.; Hsu, S. H., The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets. J Biomed Mater Res A 2011, 99, (2), 192-202. 67. Borger, M. A.; Rao, V.; Weisel, R. D.; Ivanov, J.; Cohen, G.; Scully, H. E.; David, T. E., Deep Sternal Wound Infection: Risk Factors and Outcomes. The Annals of Thoracic Surgery 1998, 65, (4), 1050-1056. 68. Probhakar, P.; Roje, D.; Castle, D.; Rat, B.; Fletcher, P.; Duquesnay, D.; Venugopal, S.; Reginald, C., Nosocomial surgical infections: Incidence and cost in a developing country. American Journal of Infection Control 1983, 11, (2), 51-56. 69. Kaye, K. S.; Schmit, K.; Pieper, C.; Sloane, R.; Caughlan, K. F.; Sexton, D. J.; Schmader, K. E., The effect of increasing age on the risk of surgical site infection. J Infect Dis 2005, 191, (7), 1056-62. 70. Ducel, G.; Hygie, F.; Geneva, Prevention of hospital-acquired infections. 2002, 5-10. 71. Classen, D. C.; Evans, R. S.; Pestotnik, S. L.; Horn, S. D.; Menlove, R. L.; Burke, J. P., The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 1992, 326, (5), 281-6. 72. Nablo, B. J.; Rothrock, A. R.; Schoenfisch, M. H., Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. Biomaterials 2005, 26, (8), 917-24. 73. An, Y. H.; Friedman, R. J., Prevention of sepsis in total joint arthroplasty. Journal of Hospital Infection 1996, 33, (2), 93-108. 74. Simchi, A.; Tamjid, E.; Pishbin, F.; Boccaccini, A. R., Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 2011, 7, (1), 22-39. 75. StandardTestMethodsfor MeasuringAdhesionbyTapeTest. 2002, 06, 01. 76. Tamboli, D. P.; Lee, D. S., Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater 2013, 260, 878-84. 77. Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D., Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, (22), 225103. 78. Baron, S., Medical Microbiology, 4th edition. 1996. 79. Sui, Z. M.; Chen, X.; Wang, L. Y.; Xu, L. M.; Zhuang, W. C.; Chai, Y. C.; Yang, C. J., Capping effect of CTAB on positively charged Ag nanoparticles. Physica E: Low-dimensional Systems and Nanostructures 2006, 33, (2), 308-314. 80. Campoccia, D.; Montanaro, L.; Arciola, C. R., A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, (34), 8533-54. 81. Sawant, S. N.; Selvaraj, V.; Prabhawathi, V.; Doble, M., Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One 2013, 8, (5), e63311. 82. Park, M. V.; Neigh, A. M.; Vermeulen, J. P.; de la Fonteyne, L. J.; Verharen, H. W.; Briede, J. J.; van Loveren, H.; de Jong, W. H., The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, (36), 9810-7. 83. Chiao, S. H.; Lin, S. H.; Shen, C. I.; Liao, J. W.; Bau, I. J.; Wei, J. C.; Tseng, L. P.; Hsu, S. H.; Lai, P. S.; Lin, S. Z.; Lin, J. J.; Su, H. L., Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. Int J Nanomedicine 2012, 7, 2421-32. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57854 | - |
dc.description.abstract | 醫學科技日新月異,表面改質技術的開發使醫療植入物的功能與效用從以往單純之機械性質導向,提升至今日兼具生物相容性之需求層面發展。骨科鋼板手術的最大併發症是發生感染並導致骨髓炎,因此具有抗菌表面之金屬能有效降低手術中的感染風險。由奈米銀粒子 (AgNP) 、層狀結構之矽片 (NSP) 、水性PU所組成之三成分奈米複合材料均勻分散於水中,塗佈於骨科鋼板之表面後,能作為具有良好抗菌及附著之骨科植入物。在骨科醫療應用上,不鏽鋼廣泛使用於骨折支架等用途,因此在此金屬表面進行改質,使之具有抗菌效果,為本篇研究之目的。
在此研究中,由之前已開發之奈米矽片銀 (AgNP/NSP 7/93) 均勻地與水性PU 依據不同的組成比例 (1/0.1至1/10 w/w) 進行混合,由紫外光吸收與穿透式電子顯微鏡等觀察,發現奈米銀粒子穩定且其大小約7~11 nm。於實驗中薄膜厚度約為1.5 μm,且發現表面抗菌性與薄膜厚度無關,但與組成中矽片銀含量有關,水性PU於系統中作為附著劑(Adhesion agent),並不影響奈米銀粒子之大小與成膜後之抗菌效果,在矽片銀混水性PU比例1/1~1/5 (w/w)中,具有良好的抗菌效果,而在毒性測試 (Mouse fibroblasts) 中,更凸顯材料的低毒特性。本研究針對不同組成比例成膜後之抗菌性、附著度以及對細菌所產生之影響,以及作為骨科植入物作研究探討,希望日後有機會做為造福人群之生醫材料。 | zh_TW |
dc.description.abstract | Metallic implants are highly associated with osteomyelitis happening. Antibacterial surface is one of the strategies to approach this problem. A tri-component nanohybrid dispersion in water comprising of silver nanoparticles (AgNP), nanometer-thick silicate platelets (NSP) and waterborne polyurethane (PU) was developed for surface coating on orthopedic metal plates. Since the stainless metal plates are commonly used as the implants to repair bond fractures in the orthopedic field, it is desired to functionalize the metal surface with antimicrobial property.
In this study, the previously developed AgNP-on-NSP nanohybrid was homogeneously blended into a selected waterborne PU dispersion at varied weight ratios from 1/0.1 to 1/10 (w/w). The resultant dispersions were shown to have stable AgNP at the size of 7-12 nm in diameter, characterized by using UV absorption and Transmission electron microscope (TEM) direct observations. The subsequent coating process allowed the formation of a nanohybrid thin film on the metal plate surface. It was found that the antimicrobial efficacy was irrelevant to the thickness of the coated materials but closely depending on the composition of Ag in PU. The presence of PU was essential for adhering Ag onto the metal surface, however, avoidably reducing the antimicrobial efficacy due to the dilution effect. Both functions were compromised by judiciously selecting the composition of AgNP-NSP to PU in the range from 1/1 to 1/5 (w/w). Furthermore, the metal plate coated with the specific 1/3 (w/w) composition was shown to be low cytotoxicity towards the contacted mouse fibroblasts. Overall, the uses of tri-component Ag/silicate/PU in water dispersion could generate a scratch-free thin film (thickness about 1.5 μm) on the metal surface while exhibiting both of antimicrobial and biocompatible properties. The facile coating technique of the AgNP in waterborne PU is proven to be viable for fabricating infection-free medical devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T07:07:37Z (GMT). No. of bitstreams: 1 ntu-103-R01549012-1.pdf: 3317600 bytes, checksum: 74eb9998cb303b16e7614c8b84028537 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 I
Acknowledgements II 摘要 III Abstract V Contents VII Figure Captions IX Table Captions XI Chapter 1 Introduction and literature review 1 1.1 Introduction of Nanomaterials 1 1.2 Introduction of nanoscale silicate platelets (NSP) 3 1.3 Introduction of slilver nanoparticles (AgNP) 5 1.3.1 Method of preparing silver nanoparticles (AgNP) 6 1.3.2 Silver as antibacterial agent 9 1.3.3 Bactericidal mechanism of silver 10 1.3.3.1 Bactericidal mechanism of silver ions 10 1.3.3.2 Bactericidal mechanism of silver nanoparticles 11 1.4 Water borne polyurethane (PU) 12 1.5 The risk of surgical-wound infection 13 1.6 Research objectives 14 Chapter 2 Experimental section 16 2.1 Materials 16 2.2 Synthesis of AgNP/NSP 7/93 nanohybrids 17 2.3 Synthesis of the waterborne PU 17 2.4 Solution coating of AgNP/NSP-PU on metal plates 18 2.5 Adhesion property of AgNP/NSP-PU film75 19 2.6 Antibacterial efficacy of AgNP/NSP-PU nanohybrid coated surface 19 2.6.1 Using phosphate buffered saline as dilute solution: 20 2.6.2 Using Luria Bertani as dilute solution: 20 2.7 Antibacterial efficacy of AgNP/NSP-PU films by LIVE/DEAD analysis 21 2.8 Biofilm assay and SEM of AgNP/NSP-PU surface 21 2.9 Cytotoxicity test of AgNP/NSP-PU surface 22 2.10 Instruments and Analyses 24 Chapter 3 Results and Discussion 26 3.1 Synthesis of AgNP/NSP 7/93 nanohybrids 26 3.2 The adhesion agent in the nanohybrid system 29 3.3 Physical property of AgNP/NSP-PU on stainless steel surface 30 3.4 AFM analysis of AgNP/NSP-PU surface 33 3.5 EDS analysis of AgNP/NSP-PU surface 34 3.6 Antibacterial efficacy of AgNP/NSP-PU and SEM analyses 36 3.6.1 Solution type ─ Antibacterial efficacy of AgNP/NSP-PU 36 3.6.2 Film type ─ Antibacterial efficacy of AgNP/NSP-PU 38 3.6.2.1 Using phosphate buffered saline as dilute solution: 38 3.6.2.2 Using Luria Bertani (LB) as dilute solution: 41 3.7 Antibacterial efficacy of AgNP/NSP-PU films by LIVE/DEAD analysis 43 3.8 Biofilm assay and SEM of AgNP/NSP-PU surface 44 3.9 Cytotoxicity test of the AgNP/NSP-PU dispersion 46 Chapter 4 Conclusion 48 Chapter 5 References 49 | |
dc.language.iso | en | |
dc.title | 奈米矽片銀/PU附著骨科用鋼材表面之抗菌與生物相容性探討 | zh_TW |
dc.title | Antimicrobial Function and Biocompatibility of Orthopedic Steel Plates by Thin-Film Coating of Tri-Component Silver-on-Silicate Platelet/PU Nanohybrids | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝國煌,張志豪,胡淑文,劉定宇(Ting-Yu Liu) | |
dc.subject.keyword | 奈米矽片,奈米銀粒子,水性樹脂,抗菌性,附著,醫療器材,不鏽鋼,表面改質,塗佈, | zh_TW |
dc.subject.keyword | nanosilicate platelets (NSP),silver nanoparticles (AgNP),waterborne polyurethane (PU),antibacterial,adhesion,medical device,stainless plate,surface treatment,coating, | en |
dc.relation.page | 55 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。