Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57812
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor胡文聰(Andrew Wo)
dc.contributor.authorMeng-Ze Lien
dc.contributor.author李孟澤zh_TW
dc.date.accessioned2021-06-16T07:05:07Z-
dc.date.available2019-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-07-10
dc.identifier.citation1. Cristofanilli, M., et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine, 2004. 351(8): p. 781-791.
2. Hayes, D.F., et al., Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clinical Cancer Research, 2006. 12(14): p. 4218-4224.
3. Danila, D.C., et al., Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 2007. 13(23): p. 7053-7058.
4. Cohen, S.J., et al., Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 2008. 26(19): p. 3213-3221.
5. Krebs, M.G., et al., Evaluation and Prognostic Significance of Circulating Tumor Cells in Patients With Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 2011. 29(12): p. 1556-1563.
6. Groebe, A., et al., Prognostic Relevance of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow of Patients with Squamous Cell Carcinoma of the Oral Cavity. Clinical Cancer Research, 2014. 20(2): p. 425-433.
7. Nole, F., et al., Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Annals of Oncology, 2008. 19(5): p. 891-897.
8. Bidard, F.C., et al., Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncology, 2014. 15(4): p. 406-414.
9. Wicha, M.S. and D.F. Hayes, Circulating Tumor Cells: Not All Detected Cells Are Bad and Not All Bad Cells Are Detected. Journal of Clinical Oncology, 2011. 29(12): p. 1508-1511.
10. Yu, M., et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013. 339(6119): p. 580-4.
11. Alix-Panabieres, C. and K. Pantel, Technologies for detection of circulating tumor cells: facts and vision. Lab on a Chip, 2014. 14(1): p. 57-62.
12. Lianidou, E.S., D. Mavroudis, and V. Georgoulias, Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer. British Journal of Cancer, 2013. 108(12): p. 2426-2432.
13. Harouaka, R., et al., Circulating tumor cells: Advances in isolation and analysis, and challenges for clinical applications. Pharmacology & Therapeutics, 2014. 141(2): p. 209-221.
14. Krebs, M.G., et al., Molecular analysis of circulating tumour cells-biology and biomarkers. Nature Reviews Clinical Oncology, 2014. 11(3): p. 129-144.
15. Riethdorf, S., et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the CellSearch system. Clinical Cancer Research, 2007. 13(3): p. 920-928.
16. Talasaz, A.H., et al., Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(10): p. 3970-3975.
17. Powell, A.A., et al., Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines. Plos One, 2012. 7(5): p. 11.
18. Harb, W., et al., Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and qPCR Assay. Translational Oncology, 2013. 6(5): p. 528-+.
19. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-U10.
20. Stott, S.L., et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(43): p. 18392-18397.
21. Vona, G., et al., Isolation by size of epithelial tumor cells - A new method for the immunomorphological and molecular characterization of circulating tumor cells. American Journal of Pathology, 2000. 156(1): p. 57-63.
22. Gascoyne, P.R.C., et al., Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis, 2009. 30(8): p. 1388-1398.
23. Gupta, V., et al., ApoStream (TM), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 2012. 6(2): p. 14.
24. Harouaka, R.A., M. Nisic, and S.Y. Zheng, Circulating Tumor Cell Enrichment Based on Physical Properties. Jala, 2013. 18(6): p. 455-468.
25. Rosenberg, R., et al., Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry, 2002. 49(4): p. 150-158.
26. Fuchs, A.B., et al., Electronic sorting and recovery of single live cells from microlitre sized samples. Lab on a Chip, 2006. 6(1): p. 121-126.
27. Frumkin, D., et al., Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. Bmc Biotechnology, 2008. 8: p. 16.
28. Lu, Z., et al., Single Cell Deposition and Patterning with a Robotic System. Plos One, 2010. 5(10): p. 9.
29. Kornyei, Z., et al., Cell sorting in a Petri dish controlled by computer vision (vol 3, 1088, 2013). Scientific Reports, 2013. 3: p. 1.
30. Peeters, D.J.E., et al., Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. British Journal of Cancer, 2013. 108(6): p. 1358-1367.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57812-
dc.description.abstract循環腫瘤細胞於現階段被認為是一種具有檢測與診斷癌症潛力的指標。許多研究已驗證了循環腫瘤細胞的數量與患者的存活率有明顯的關係,但這種細胞本身極度稀少且異質性高,而現有大部份針對其純化之技術的靈敏度還需要被佐證的狀況下,這些循環腫瘤細胞計數的資訊目前於臨床上並不具有實質的效用。為了更加了解循環腫瘤細胞於癌症轉移的過程中所具有的臨床價值,對這些細胞進行定性分類、單細胞分析與分子分析的研究開始受到關注。本論文展示一套搭配特殊設計平台的細胞抓取系統,以幫助臨床學家與腫瘤學者更容易取得高度純化的細胞來針對循環腫瘤細胞進行更深入的研究。
我們設計並建構了一套細胞抓取系統用於取出循環腫瘤細胞。為了提高其效率,這套系統中具有特殊的設計以減少在抓取過程中對周遭非目標細胞的擾動。實驗結果顯示目標細胞的成功抓取率幾近100%且其抓取純率超越90%,遠高於原始設計。此外我們利用健康人全血混入Colo 205的實驗展示由碟盤系統初步分選至自動化細胞抓取的整合流程,並取得過半的目標細胞與幾近100%的抓取純率。總的來說,此細胞抓取系統藉著特殊設計平台的幫助已可實現初步的自動化,同時兼具高抓取回收率與抓取純率,可望能在未來成為一套有力的系統來協助循環腫瘤細胞之後端研究。
zh_TW
dc.description.abstractCirculating tumor cell (CTC) now is thought to be a possible surrogate for cancer diagnosis and prognosis. Many studies have reported worse survival of patients in different cancer types was related to the higher number of detected CTCs. However, CTC count information still do not possess clinical utility to date since CTC presents high rarity and heterogeneity, yet the sensitivity of most technologies for CTC enrichment remain to be validated. To advance the understanding and clinical value of CTC in metastasis process, there has been great interest in subtyping, single cell profiling and molecular analysis of CTC. This thesis presents a cell retrieval system with a modified platform as a beneficial tool helping clinicians and oncologists to obtain highly purified cells of interest which allows them to explore deeper potential of CTC.
We designed and constructed a cell retrieval system to remove CTC, which would be extremely difficult without the special design due to flow interaction between neighboring cells during the retrieval process. Results show cell retrieval rate reached nearly 100% of target cells and the average retrieval purity was over 90%, which is much higher than the original design. Moreover, we used Colo 205 spiked into blood sample to demonstrate the seamless process from primary isolation of disk system to automatic cell retrieval which has been successfully performed with over half target cells were retrieved of a nearly 100% retrieval purity. In conclusion, the cell retrieval system with the modified platform has realized the primary automation of cell retrieving technique with high retrieval rate and high retrieval purity, which should become a powerful tool to assist CTC characterization and molecular analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:05:07Z (GMT). No. of bitstreams: 1
ntu-103-R01543061-1.pdf: 4053010 bytes, checksum: 47fe3b12d49d919165e35a91f978740b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents VI
List of figures VII
List of tables VIII
Chapter 1. Introduction 1
1.1 Clinical value and developing tendency of circulating tumor cells 1
1.2 Existing isolation methods for CTC enrichment 3
1.3 Previous development of microfluidic disk system 6
1.4 Existing technologies for single cell retrieval 7
Chapter 2. Architecture of total CTC retrieval system 11
2.1 System architecture overview 11
2.2 Disk system for first purification from whole blood 13
2.3 Cell detection 16
2.4 Cell retrieval system 19
Chapter 3. Materials and methods 22
3.1 Design features and fabrication of microcavity chip 22
3.2 Fabrication of micropipette tip 26
3.3 Pre-experimental preparation 27
3.4 Procedures for cell retrieval 27
Chapter 4. Results and discussion 29
4.1 Recovery rate 29
4.2 Parameters optimization 32
4.3 Comparison between microcavity chip and original cell collecting chip 39
4.4 Automatic cell retrieval in whole blood 45
Chapter 5. Conclusions 47
References 49
dc.language.isoen
dc.subject循環腫瘤細胞zh_TW
dc.subject抓取純率zh_TW
dc.subject細胞抓取zh_TW
dc.subject自動化zh_TW
dc.subjectCTCen
dc.subjectcell retrievalen
dc.subjectretrieval purityen
dc.subjectautomationen
dc.title全血中單細胞回收之自動化微流系統開發zh_TW
dc.titleAn automated, seamless microfluidic system for single cell isolation and retrieval from whole blooden
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林璟宏(Ching-Hung Lin),范士岡(Shih-Kang Fan)
dc.subject.keyword循環腫瘤細胞,細胞抓取,抓取純率,自動化,zh_TW
dc.subject.keywordCTC,cell retrieval,retrieval purity,automation,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2014-07-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
3.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved