請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖 | |
| dc.contributor.author | Ya-Hsin Cheng | en |
| dc.contributor.author | 鄭雅心 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:03:21Z | - |
| dc.date.available | 2016-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-14 | |
| dc.identifier.citation | [1] C.-C. Lo, C.-W. Huang, C.-H. Liao, J.C.S. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting, International Journal of Hydrogen Energy, 35 (2010) 1523-1529.
[2] A. Kudo, H. Kato, I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting, Chemistry Letters, 33 (2004) 1534-1539. [3] A. Kudo, Photocatalyst Materials for Water Splitting, Catalysis Surveys from Asia, 7 (2003) 31-38. [4] K. Maeda, K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C, 111 (2007) 7851-7861. [5] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [6] A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chemical Society Reviews, 22 (1993) 417-425. [7] H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292. [8] F. Akira, H. Kenichi, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38. [9] K. Fujihara, T. Ohno, M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3705-3709. [10] M. Kitano, K. Tsujimaru, M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction, Applied Catalysis A: General, 314 (2006) 179-183. [11] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catalysis Letters, 53 (1998) 229-230. [12] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤ 650 nm), Journal of the American Chemical Society, 124 (2002) 13547-13553. [13] A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5, Chemistry of Materials, 15 (2003) 4442-4446. [14] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation ([small lambda] [less-than-or-equal] 500 nm), Chemical Communications, (2002) 1698-1699. [15] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Photoreactions on LaTiO2N under Visible Light Irradiation, The Journal of Physical Chemistry A, 106 (2002) 6750-6753. [16] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure, The Journal of Physical Chemistry B, 106 (2002) 12441-12447. [17] I.M.A. Kudo, Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution., Faraday Transactions, 94 (1998) 2929-2932. [18] H.C. Youn, S. Baral, J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, The Journal of Physical Chemistry, 92 (1988) 6320-6327. [19] Wikipedia web-Photosynthesis. [20] K.T.K. Maeda, T.T. D. Lu, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water., Nature, (2006). [21] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38 (2009) 253-278. [22] H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, The Journal of Physical Chemistry B, 106 (2002) 5029-5034. [23] 游思淳, 吳紀聖, 光催化水分解雙反應器之離子媒介傳輸現象, (2010). [24] H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of the American Chemical Society, 125 (2003) 3082-3089. [25] K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts, The Journal of Physical Chemistry, 90 (1986) 292-295. [26] H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today, 78 (2003) 561-569. [27] V. Subramanian, R.K. Roeder, E.E. Wolf, Synthesis and UV−Visible-Light Photoactivity of Noble-Metal−SrTiO3 Composites, Industrial & Engineering Chemistry Research, 45 (2006) 2187-2193. [28] H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H-2 and O-2 under visible light irradiation., Chemistry Letters, 33 (2004) 1348-1349. [29] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme splitting under visible light irradiation, Journal of Catalysis, 259 (2008) 133-137. [30] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J.M. Thomas, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today, 122 (2007) 51-61. [31] S.W. Bae, S.M. Ji, S.J. Hong, J.W. Jang, J.S. Lee, Photocatalytic overall water splitting with dual-bed system under visible light irradiation, International Journal of Hydrogen Energy, 34 (2009) 3243-3249. [32] M. Higashi, A.I. R. Abe, B.O. T. Takata, K. Domen, Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (lambda < 500 nm). Chemistry Letters, 37 (2008) 138-139. [33] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams, Industrial & Engineering Chemistry Research, 45 (2006) 2558-2568. [34] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt, The Journal of Physical Chemistry B, 101 (1997) 2632-2636. [35] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catal. Today, 44 (1998) 327-332. [36] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, Applied Catalysis B: Environmental, 23 (1999) 169-174. [37] K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties, The Journal of Physical Chemistry B, 105 (2001) 8350-8355. [38] I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts, Appl. Catal. B-Environ., 37 (2002) 37-48. [39] K. Tennakone, Photoreduction of carbonic acid by mercury coated n-titanium dioxide, Solar Energy Materials, 10 (1984) 235-238. [40] G.Q. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal. B-Environ., 41 (2003) 387-396. [41] Y. Ku, W.-H. Lee, W.-Y. Wang, Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process, Journal of Molecular Catalysis A: Chemical, 212 (2004) 191-196. [42] T.-f. Xie, D.-j. Wang, L.-j. Zhu, T.-j. Li, Y.-j. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, 70 (2001) 103-106. [43] N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal. B-Environ., 62 (2006) 169-180. [44] P.-W. Pan, Y.-W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation, Catal. Commun., 8 (2007) 1546-1549. [45] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.-H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catal. Commun., 11 (2009) 210-213. [46] J.C. Hemminger, R. Carr, G.A. Somorjai, The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane, Chemical Physics Letters, 57 (1978) 100-104. [47] Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka*, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123. [48] Swarthmore, Powder Diffraction File No.85-1337. in JCPDS, International Center for Diffraction Data, (1997). [49] -. Swarthmore, Powder Diffraction File No.89-5899. in JCPDS, International Center for Diffraction Data, (1997). [50] swarthmore, Powder Diffraction File No.87-1901. in JCPDS, International Center for Diffraction Data, (1997). [51] S.T.M. M.R. Hoffmann, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96. [52] 邱政緯, 雙反應器藉由 I- / IO3-電子媒介進行光 催化水分解, 國立大學碩士論文, (2013). [53] 李韋萱, 雙胞反應器進行光催化水分解結合二氧化碳還原, 國立台灣大學碩士論文, (2012). [54] R.J.D. Makarand R. Gogate, Compative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts Catalysis Communications, (2010) 901-906. [55] K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent, Journal of the American Chemical Society, 133 (2011) 20863-20868. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57782 | - |
| dc.description.abstract | 隨著工業的蓬勃發展,使得人類對於化石燃料的需求與日漸增,卻也導致大氣中的二氧化碳排放量逐年遞增,造成環境產生了劇烈的變化,例如:溫室效應、全球海平面上升、海洋生態改變等等。這些因為工業上的發展與科技的進步而衍生出的環境衝擊問題,已經引起全球科學家的注意和尋找改善方法。其中利用光觸媒還原二氧化碳成有機化物,兼具了無汙染又可消除二氧化碳的優點為目前許多科學家嘗試的方法。
由於二氧化碳的還原反應效率較低,因此利用一氧化碳活性較高的特性,將一氧化碳與二氧化碳同時當作反應物進行還原反應,並延續實驗室前人的雙胞反應器且利用薄膜將反應器兩端的產氧端反應與還原端反應分開,以降低產物逆反應的發生機率,由於在還原端的水分解所產生的氫可當作還原反應的氫源,以期望達到提高還原反應的效率。 本實驗利用WO3於反應器氧化端進行水分解半反應產氧,以及利用Pt/ CuAlGaO4與Pt/ SrTiO3:Rh於反應器還原端進行水分解產氫以及CO/CO2光催化還原反應,SrTiO3:Rh、CuAlGaO4皆採用固態熔融法製備,負載共觸媒Pt則採用光沉積法。以300W氙燈作為可見光源,當反應物為純CO2時,得到氫氣平均產率0.12μmol/g•h,氧氣的平均產率為0.76 umole/g•h,而甲醇的平均產率為0.52 umole/g•h。當反應物CO:CO2為1:10時,氧氣的平均產率為1.5umole/g•h,氫氣的平均產率為0.1 umole/g•h,而甲醇的平均產率為1 umole/g•h。由此可知,當反應物為CO/CO2時,其甲醇的產量效率明顯增加很多。當反應物CO:CO2為1:5時,甲醇的量並不會較CO:CO2為1:10多,推論原因為,CO的溶解度有限,在CO:CO2為1:5與CO:CO2為1:10兩種狀況下,水溶液中的CO含量是差不多的,因此無法提升還原反應的效率。 | zh_TW |
| dc.description.abstract | With the rapid development of industry, the need of fossil fuels for humans increases.But this condition also leads to emissions of carbon dioxide in the atmosphere, resulting in a dramatic change in the environment, such as the greenhouse effect, global sea level risesetc. Because of these developments and technological advances in the industry, the environmental impact have attracted the attention of scientists around the world and looking for ways to improve .One of promising solutions is using photocatalysts to convert carbon dioxide to hydrocarbons.
But the low efficiency of the carbon dioxidereduction reaction is a problem for scientists. Because ofthe better activity of carbon monoxide, using carbon monoxide and carbon dioxide to do the reduction experiment is a better way to improve the efficiency.In this study, CO2 photoreduction is applied into a novel twin photoreactor, which can separate H2 and hydrocarbon from O2. We employed WO3as oxygen photocatalyst,solid state method derived CuAlGaO4 loaded with Pt as reduction photocatalyst, and employed solid state method derived SrTiO3:Rhloaded with Pt as hydrogen photocatalyst.We used 300Wxenon lampas the visiblelight source and Fe3+ pre-treatedNafionmembrane to separate two sides of half-reaction. and adjusted pH value of both sides to 2.6. When the reactant was pure CO2, the average yield of hydrogen is 0.12μmol / g • h, the average yield of oxygen is 0.76 umole / g • h, and the average yield of methanol is 0.52 umole / g • h. When the reactant of CO/CO2 is 1:10, the average yield of oxygen is 1.5umole / g • h, the average hydrogen yield is 0.1 umole / g • h, while the average yield of methanol and 1 umole / g • h.From the study, when the reactant is CO/CO2, the efficiency of carbon dioxide reduction significantly increases a lot.But when the reactant of CO/CO2 is 1:5, the amount of methanol is not more than the methanol fromthe reactant of CO/CO2 is 1:10. We think the reason is the low solubility of CO. Because the amount of CO in the solution in the two conditions is similar, it could not increase the efficiency of carbon dioxide reduction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:03:21Z (GMT). No. of bitstreams: 1 ntu-103-R01524002-1.pdf: 5003091 bytes, checksum: ab78aa8b97db894f34e68a6f51e72b95 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Keyword : CO2 photoreduction, photocatalytic water splitting, ion transportation III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 第二章 文獻回顧 3 2-1原理 3 2-1.1光觸媒基本原理與水分解 3 2.1.2光觸媒反應的基本原理 5 2-1.3光反應器型式 8 2-2影響水分解反應的因素 10 2-2.1觸媒材料特性 10 2-2.2光催化與犧牲試劑原理 11 2-2.3共觸媒元素負載效應 14 2-3製備觸媒方法 16 2-3.1固態溶融法製備 16 2-4光催化水分解系統 17 2-4.1單一光觸媒反應系統 17 2-4.2雙光觸媒反應系統 20 2-5二氧化碳雙反應器系統 24 2-5.1溫室效應 24 2-5.2植物光合作用 25 2-5.3二氧化碳光催化還原 27 2-5.4二氧化碳/一氧化碳光催化氫化還原 28 第三章 實驗方法 31 3-1實驗藥品與儀器設備 31 3-1.1藥品 31 3-2還原觸媒的製備 34 3-2.1固態溶融法(Solid-State Fusion Method) 34 3-2.2光沉積法(Photocatalytic Deposition Method) 34 3-3產氧觸媒 35 3-4產氫觸媒 35 3-4.1固態溶融法 35 3-4.2光沉積法 36 3-5 陽離子交換膜的前處理 37 3.6觸媒特性分析原理 39 3.6.1儀器型號與規格 39 3.6.2 X光射儀(X-Ray Diffractometer,XRD) 40 3.6.3紫外光-可見光光譜儀(UV-Visible Diffuse Reflectance Spectroscopy) 45 3.6.4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, SEM) 47 3.6.5能量分散光譜儀( Energy Dispersive Spectrometer,EDS) 48 3.6.6穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 49 3.6.7比表面積分析儀( Specific Surface Area Analyzer,BET ) 50 3.6.8 光光電子能譜儀( X-ray Photoelectron Spectroscopy,XPS ) 51 3.6.9 氣相管柱層析儀( GC ) 52 3.6.10光反應活性檢測 55 3.7光催化-CO/CO2還原反應條件試驗-分離式雙胞膜反應器系統 56 3.8 雙胞反應器CO/CO2還原反應實驗介紹 60 3.8.1反應選定因素 61 3.8.2光催化反應實驗流程 62 第四章 觸媒特性分析與討論 64 4.1 UV-Vis吸收光譜 64 4.2 XRD晶格繞射分析 65 4.3 SEM掃描式電子顯微鏡 67 4.4 EDS能量分散光譜 70 4.5 TEM穿透式電子顯微鏡 72 4.6 XPS表面元素價態分析 75 4.7 BET比表面積測定 77 第五章 光催化反應實驗與結果討論 77 5.1.光催化還原反應 77 5.2莫耳平衡比例計算以及光量子效率 83 5.2.1雙反應器反應可能途徑 83 5.2.2光量子效率計算原理 84 5.2.3光量子效率計算過程 85 第六章 結論 87 第七章 參考文獻 88 Appendix 93 個人小傳 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙胞反應器 | zh_TW |
| dc.subject | 離子傳遞 | zh_TW |
| dc.subject | 水分解反應 | zh_TW |
| dc.subject | 二氧化碳還原反 | zh_TW |
| dc.subject | 碳氫化合物 | zh_TW |
| dc.subject | CO2 photoreduction | en |
| dc.subject | photocatalytic water splitting | en |
| dc.subject | ion transportation | en |
| dc.subject | twin reactor | en |
| dc.subject | hydrocarbon | en |
| dc.title | 光催氫化CO/CO2水溶液成碳氫化合物 | zh_TW |
| dc.title | Photocatalytic hydrogenation of CO/CO2 to hydrocarbons in aqueous solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬本儒,張淑閔 | |
| dc.subject.keyword | 二氧化碳還原反,水分解反應,離子傳遞,雙胞反應器,碳氫化合物, | zh_TW |
| dc.subject.keyword | CO2 photoreduction,photocatalytic water splitting,ion transportation,twin reactor,hydrocarbon, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
