Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩(Ya-Chien Yang)
dc.contributor.authorTzu-Ming Jaoen
dc.contributor.author饒梓明zh_TW
dc.date.accessioned2021-06-16T07:03:06Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-07-14
dc.identifier.citation1. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67.
2. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): p. 11-30.
3. Manfredi, S., et al., Epidemiology and management of liver metastases from colorectal cancer. Ann Surg, 2006. 244(2): p. 254-9.
4. Meyerhardt, J.A. and R.J. Mayer, Systemic therapy for colorectal cancer. N Engl J Med, 2005. 352(5): p. 476-87.
5. Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60.
6. van Engeland, M., et al., Colorectal cancer epigenetics: complex simplicity. J Clin Oncol, 2011. 29(10): p. 1382-91.
7. Bendardaf, R., H. Lamlum, and S. Pyrhonen, Prognostic and predictive molecular markers in colorectal carcinoma. Anticancer Res, 2004. 24(4): p. 2519-30.
8. Duffy, M.J., N. O'Donovan, and J. Crown, Use of molecular markers for predicting therapy response in cancer patients. Cancer Treat Rev, 2011. 37(2): p. 151-9.
9. Worthley, D.L. and B.A. Leggett, Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev, 2010. 31(2): p. 31-8.
10. Leslie, A., et al., Mutations of APC, K-ras, and p53 are associated with specific chromosomal aberrations in colorectal adenocarcinomas. Cancer Res, 2003. 63(15): p. 4656-61.
11. Walther, A., R. Houlston, and I. Tomlinson, Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut, 2008. 57(7): p. 941-50.
12. Dunican, D.S., et al., Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene, 2002. 21(20): p. 3253-7.
13. Grady, W.M. and J.M. Carethers, Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008. 135(4): p. 1079-99.
14. Pritchard, C.C. and W.M. Grady, Colorectal cancer molecular biology moves into clinical practice. Gut, 2011. 60(1): p. 116-29.
15. Rowan, A., et al., Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol, 2005. 3(11): p. 1115-23.
16. Phelps, R.A., et al., A two-step model for colon adenoma initiation and progression caused by APC loss. Cell, 2009. 137(4): p. 623-34.
17. Bellam, N. and B. Pasche, Tgf-beta signaling alterations and colon cancer. Cancer Treat Res, 2010. 155: p. 85-103.
18. Chow, E. and F. Macrae, A review of juvenile polyposis syndrome. J Gastroenterol Hepatol, 2005. 20(11): p. 1634-40.
19. Jiang, Y., et al., Assessment of K-ras mutation: a step toward personalized medicine for patients with colorectal cancer. Cancer, 2009. 115(16): p. 3609-17.
20. Yuen, S.T., et al., Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res, 2002. 62(22): p. 6451-5.
21. Velho, S., et al., BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis? BMC Cancer, 2008. 8: p. 255.
22. Liu, B., et al., Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med, 1996. 2(2): p. 169-74.
23. Aquilina, G., et al., A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a mutator phenotype. Proc Natl Acad Sci U S A, 1994. 91(19): p. 8905-9.
24. Jass, J.R., et al., Diagnostic use of microsatellite instability in hereditary non-polyposis colorectal cancer. Lancet, 1995. 346(8984): p. 1200-1.
25. Perucho, M., Microsatellite instability: the mutator that mutates the other mutator. Nat Med, 1996. 2(6): p. 630-1.
26. Thibodeau, S.N., G. Bren, and D. Schaid, Microsatellite instability in cancer of the proximal colon. Science, 1993. 260(5109): p. 816-9.
27. Soreide, K., et al., Microsatellite instability in colorectal cancer. Br J Surg, 2006. 93(4): p. 395-406.
28. Popat, S., R. Hubner, and R.S. Houlston, Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol, 2005. 23(3): p. 609-18.
29. Gryfe, R., et al., Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med, 2000. 342(2): p. 69-77.
30. Bellizzi, A.M. and W.L. Frankel, Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol, 2009. 16(6): p. 405-17.
31. Wong, J.J., N.J. Hawkins, and R.L. Ward, Colorectal cancer: a model for epigenetic tumorigenesis. Gut, 2007. 56(1): p. 140-8.
32. Castellvi-Bel, S. and A. Castells, CpG island methylator phenotype: the third way of colorectal carcinogenesis. Gastroenterology, 2007. 132(3): p. 1184-5.
33. Boland, C.R., S.K. Shin, and A. Goel, Promoter methylation in the genesis of gastrointestinal cancer. Yonsei Med J, 2009. 50(3): p. 309-21.
34. Kim, J.C., et al., Promoter methylation of specific genes is associated with the phenotype and progression of colorectal adenocarcinomas. Ann Surg Oncol, 2010. 17(7): p. 1767-76.
35. Lee, S., et al., CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med, 2008. 132(10): p. 1657-65.
36. Teodoridis, J.M., C. Hardie, and R. Brown, CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett, 2008. 268(2): p. 177-86.
37. Charron, F. and M. Tessier-Lavigne, The Hedgehog, TGF-beta/BMP and Wnt families of morphogens in axon guidance. Adv Exp Med Biol, 2007. 621: p. 116-33.
38. Kinzler, K.W., et al., Identification of FAP locus genes from chromosome 5q21. Science, 1991. 253(5020): p. 661-5.
39. Nishisho, I., et al., Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 1991. 253(5020): p. 665-9.
40. Korinek, V., et al., Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 1997. 275(5307): p. 1784-7.
41. Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787-90.
42. Miyaki, M., et al., Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res, 1994. 54(11): p. 3011-20.
43. Miyoshi, Y., et al., Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet, 1992. 1(4): p. 229-33.
44. Powell, S.M., et al., APC mutations occur early during colorectal tumorigenesis. Nature, 1992. 359(6392): p. 235-7.
45. Polakis, P., Wnt signaling and cancer. Genes Dev, 2000. 14(15): p. 1837-51.
46. Lammi, L., et al., Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet, 2004. 74(5): p. 1043-50.
47. Liu, W., et al., Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet, 2000. 26(2): p. 146-7.
48. Hay, E.D., An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 1995. 154(1): p. 8-20.
49. Townsend, T.A., et al., Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem, 2008. 283(20): p. 13834-41.
50. Peinado, H., F. Portillo, and A. Cano, Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol, 2004. 48(5-6): p. 365-75.
51. Kim, K., Z. Lu, and E.D. Hay, Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int, 2002. 26(5): p. 463-76.
52. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005. 17(5): p. 548-58.
53. Savagner, P., K.M. Yamada, and J.P. Thiery, The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol, 1997. 137(6): p. 1403-19.
54. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39.
55. McCoy, E.L., et al., Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest, 2009. 119(9): p. 2663-77.
56. Micalizzi, D.S., et al., The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest, 2009. 119(9): p. 2678-90.
57. Peinado, H., M. Quintanilla, and A. Cano, Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem, 2003. 278(23): p. 21113-23.
58. Zhao, S., et al., Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res, 2008. 68(11): p. 4221-8.
59. Leivonen, S.K., et al., Smad3 mediates transforming growth factor-beta-induced collagenase-3 (matrix metalloproteinase-13) expression in human gingival fibroblasts. Evidence for cross-talk between Smad3 and p38 signaling pathways. J Biol Chem, 2002. 277(48): p. 46338-46.
60. Reynisdottir, I., et al., Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev, 1995. 9(15): p. 1831-45.
61. Hsu, S., et al., Colon carcinoma cells switch their response to transforming growth factor beta 1 with tumor progression. Cell Growth Differ, 1994. 5(3): p. 267-75.
62. Engle, S.J., et al., Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res, 1999. 59(14): p. 3379-86.
63. Siegel, P.M., et al., Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8430-5.
64. Muraoka, R.S., et al., Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest, 2002. 109(12): p. 1551-9.
65. Muraoka-Cook, R.S., et al., Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene, 2006. 25(24): p. 3408-23.
66. Ghellal, A., et al., Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res, 2000. 20(6B): p. 4413-8.
67. Mu, L., et al., TGF-beta1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br J Cancer, 2008. 99(8): p. 1357-63.
68. Zhao, J.H., et al., Knockdown of beta-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. Cancer Invest, 2011. 29(6): p. 377-82.
69. Yook, J.I., et al., A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol, 2006. 8(12): p. 1398-406.
70. Kwon, C.Y., et al., The role of serum response factor in hepatocellular carcinoma: implications for disease progression. Int J Oncol, 2010. 37(4): p. 837-44.
71. Harrison, S. and H. Benziger, The molecular biology of colorectal carcinoma and its implications: a review. Surgeon, 2011. 9(4): p. 200-10.
72. Arribas, R., et al., Prospective assessment of allelic losses at 4p14-16 in colorectal cancer: two mutational patterns and a locus associated with poorer survival. Clin Cancer Res, 1999. 5(11): p. 3454-9.
73. Shivapurkar, N., et al., Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol, 2001. 32(2): p. 169-77.
74. Jones, A.M., et al., Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J Pathol, 2007. 213(3): p. 249-56.
75. Singh, R.K., et al., Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum Genet, 2007. 122(1): p. 71-81.
76. Wrage, M., et al., Genomic profiles associated with early micrometastasis in lung cancer: relevance of 4q deletion. Clin Cancer Res, 2009. 15(5): p. 1566-74.
77. Arai, Y., et al., Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer, 2010. 49(7): p. 596-609.
78. Tzeng, S.T., et al., NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One, 2013. 8(6): p. e67040.
79. Sano, K., et al., Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J, 1993. 12(6): p. 2249-56.
80. Nollet, F., P. Kools, and F. van Roy, Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol, 2000. 299(3): p. 551-72.
81. Redies, C., K. Vanhalst, and F. Roy, delta-Protocadherins: unique structures and functions. Cell Mol Life Sci, 2005. 62(23): p. 2840-52.
82. Kim, S.Y., et al., Non-clustered protocadherin. Cell Adh Migr, 2011. 5(2): p. 97-105.
83. Wu, Q. and T. Maniatis, A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 1999. 97(6): p. 779-90.
84. Morishita, H., et al., Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. J Biol Chem, 2006. 281(44): p. 33650-63.
85. Obata, S., et al., Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins. J Cell Sci, 1995. 108 ( Pt 12): p. 3765-73.
86. Frank, M., et al., Differential expression of individual gamma-protocadherins during mouse brain development. Mol Cell Neurosci, 2005. 29(4): p. 603-16.
87. Reiss, K., et al., Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion. J Biol Chem, 2006. 281(31): p. 21735-44.
88. Schreiner, D. and J.A. Weiner, Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14893-8.
89. Morishita, H. and T. Yagi, Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol, 2007. 19(5): p. 584-92.
90. Tissir, F., et al., Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci, 2005. 8(4): p. 451-7.
91. Redies, C., et al., Expression of protocadherin-1 (Pcdh1) during mouse development. Dev Dyn, 2008. 237(9): p. 2496-505.
92. Hirano, S., Q. Yan, and S.T. Suzuki, Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J Neurosci, 1999. 19(3): p. 995-1005.
93. Yamagata, K., et al., Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem, 1999. 274(27): p. 19473-1979.
94. Aamar, E. and I.B. Dawid, Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol, 2008. 318(2): p. 335-46.
95. Kim, S.H., et al., The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development, 1998. 125(23): p. 4681-90.
96. Kuroda, H., et al., Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev Biol, 2002. 244(2): p. 267-77.
97. Yoshida, K., Fibroblast cell shape and adhesion in vitro is altered by overexpression of the 7a and 7b isoforms of protocadherin 7, but not the 7c isoform. Cell Mol Biol Lett, 2003. 8(3): p. 735-41.
98. Tai, K., et al., Adhesion properties and retinofugal expression of chicken protocadherin-19. Brain Res, 2010. 1344: p. 13-24.
99. Nakao, S., et al., Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J Cell Biol, 2008. 182(2): p. 395-410.
100. Grove, E.A., Turning neurons into a nervous system. Development, 2008. 135(13): p. 2203-6.
101. Heggem, M.A. and R.S. Bradley, The cytoplasmic domain of Xenopus NF-protocadherin interacts with TAF1/set. Dev Cell, 2003. 4(3): p. 419-29.
102. Chen, M.W., et al., The emergence of protocadherin-PC expression during the acquisition of apoptosis-resistance by prostate cancer cells. Oncogene, 2002. 21(51): p. 7861-71.
103. Yasuda, S., et al., Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron, 2007. 56(3): p. 456-71.
104. Homayouni, R., D.S. Rice, and T. Curran, Disabled-1 interacts with a novel developmentally regulated protocadherin. Biochem Biophys Res Commun, 2001. 289(2): p. 539-47.
105. Borrell, V., et al., Reelin and mDab1 regulate the development of hippocampal connections. Mol Cell Neurosci, 2007. 36(2): p. 158-73.
106. Berx, G. and F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a003129.
107. Vincent, A., et al., Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res, 2011. 17(13): p. 4341-54.
108. Wang, C., et al., Downregulation of PCDH9 predicts prognosis for patients with glioma. J Clin Neurosci, 2012. 19(4): p. 541-5.
109. Lancaster, J.M., et al., Identification of genes associated with ovarian cancer metastasis using microarray expression analysis. Int J Gynecol Cancer, 2006. 16(5): p. 1733-45.
110. Haruki, S., et al., Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis, 2010. 31(6): p. 1027-36.
111. Giefing, M., et al., High resolution ArrayCGH and expression profiling identifies PTPRD and PCDH17/PCH68 as tumor suppressor gene candidates in laryngeal squamous cell carcinoma. Genes Chromosomes Cancer, 2011. 50(3): p. 154-66.
112. Yang, Y., et al., PCDH17 gene promoter demethylation and cell cycle arrest by genistein in gastric cancer. Histol Histopathol, 2012. 27(2): p. 217-24.
113. Imoto, I., et al., Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res, 2006. 66(9): p. 4617-26.
114. Bos, P.D., et al., Genes that mediate breast cancer metastasis to the brain. Nature, 2009. 459(7249): p. 1005-9.
115. Echizen, K., et al., PCDH10 is required for the tumorigenicity of glioblastoma cells. Biochem Biophys Res Commun, 2014. 444(1): p. 13-8.
116. Marshall, C.R., et al., Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet, 2008. 82(2): p. 477-88.
117. Morrow, E.M., et al., Identifying autism loci and genes by tracing recent shared ancestry. Science, 2008. 321(5886): p. 218-23.
118. Kasnauskiene, J., et al., A single gene deletion on 4q28.3: PCDH18--a new candidate gene for intellectual disability? Eur J Med Genet, 2012. 55(4): p. 274-7.
119. Blanco, P., et al., Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mamm Genome, 2000. 11(10): p. 906-14.
120. Carrasquillo, M.M., et al., Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nat Genet, 2009. 41(2): p. 192-8.
121. Dibbens, L.M., et al., X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet, 2008. 40(6): p. 776-81.
122. Koppelman, G.H., et al., Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med, 2009. 180(10): p. 929-35.
123. Sood, A., et al., Methylated Genes in Sputum Among Older Smokers With Asthma. Chest, 2012. 142(2): p. 425-31.
124. Uemura, M., et al., OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci, 2007. 10(9): p. 1151-9.
125. Ying, J., et al., Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene, 2006. 25(7): p. 1070-80.
126. Ying, J., et al., Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br J Haematol, 2007. 136(6): p. 829-32.
127. Yu, J., et al., Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology, 2009. 136(2): p. 640-51 e1.
128. Narayan, G., et al., Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromosomes Cancer, 2009. 48(11): p. 983-92.
129. Li, Z., et al., Epigenetic inactivation of PCDH10 in human prostate cancer cell lines. Cell Biol Int, 2011. 35(7): p. 671-6.
130. Bertrand, K.C., et al., PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Childs Nerv Syst, 2011. 27(8): p. 1243-9.
131. Tang, X., et al., Protocadherin 10 is frequently downregulated by promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. Cancer Biomark, 2012. 12(1): p. 11-9.
132. Zhong, X., et al., Frequent epigenetic silencing of PCDH10 by methylation in human colorectal cancer. J Cancer Res Clin Oncol, 2013. 139(3): p. 485-90.
133. Lin, Y.L., Z.G. Li, and T.Y. Guan, The clinical significance of PCDH10 promoter methylation in patients with bladder transitional cell carcinoma. Urol Int, 2013. 90(2): p. 219-24.
134. Lin, Y.L., et al., Clinical and prognostic significance of protocadherin-10 (PCDH10) promoter methylation in bladder cancer. J Int Med Res, 2012. 40(6): p. 2117-23.
135. Ma, J.G., et al., Downregulation of protocadherin-10 expression correlates with malignant behaviour and poor prognosis in human bladder cancer. J Int Med Res, 2013. 41(1): p. 38-47.
136. Narayan, G., et al., PCDH10 promoter hypermethylation is frequent in most histologic subtypes of mature lymphoid malignancies and occurs early in lymphomagenesis. Genes Chromosomes Cancer, 2013. 52(11): p. 1030-41.
137. Jao, T.M., et al., Protocadherin 10 suppresses tumorigenesis and metastasis in colorectal cancer and its genetic loss predicts adverse prognosis. Int J Cancer, 2014.
138. Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.
139. Coman, D.R., L.R. de, and U.M. Mcc, Studies on the mechanisms of metastasis; the distribution of tumors in various organs in relation to the distribution of arterial emboli. Cancer Res, 1951. 11(8): p. 648-51.
140. Brugmans, M., J.J. Cassiman, and H. van den Berghe, Selective adhesion and impaired adhesive properties of transformed cells. J Cell Sci, 1978. 33: p. 121-32.
141. Wang, K.H., et al., Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings. Cancer Sci, 2009. 100(11): p. 2175-80.
142. Li, Y., et al., Protocadherin-10 is involved in angiogenesis and methylation correlated. Int J Mol Med, 2012.
143. Tsai, M.H., et al., Mitochondrial genomic instability in colorectal cancer: no correlation to nuclear microsatellite instability and allelic deletion of hMSH2, hMLH1, and p53 genes, but prediction of better survival for Dukes' stage C disease. Ann Surg Oncol, 2009. 16(10): p. 2918-25.
144. Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3.
145. Wolverton, T. and M. Lalande, Identification and characterization of three members of a novel subclass of protocadherins. Genomics, 2001. 76(1-3): p. 66-72.
146. Wang, H., et al., Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013. 8(2): p. e56664.
147. Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 2007. 7(6): p. 415-28.
148. Song, L.B., et al., The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest, 2009. 119(12): p. 3626-36.
149. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
150. Walther, A., et al., Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009. 9(7): p. 489-99.
151. Silva, T.D., et al., DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol Lett, 2013. 6(6): p. 1687-1692.
152. Yu, J.S., et al., PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene, 2008. 27(34): p. 4657-65.
153. Perea, J., M. Lomas, and M. Hidalgo, Molecular basis of colorrectal cancer: towards an individualized management? Rev Esp Enferm Dig, 2011. 103(1): p. 29-35.
154. Danese, E., et al., Epigenetic alteration: new insights moving from tissue to plasma - the example of PCDH10 promoter methylation in colorectal cancer. Br J Cancer, 2013. 109(3): p. 807-13.
155. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8681-6.
156. Jeanes, A., C.J. Gottardi, and A.S. Yap, Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene, 2008. 27(55): p. 6920-9.
157. Redies, C., N. Hertel, and C.A. Hubner, Cadherins and neuropsychiatric disorders. Brain Res, 2012. 1470: p. 130-44.
158. Mottet, D., et al., Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem, 2003. 278(33): p. 31277-85.
159. Flugel, D., et al., Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol, 2007. 27(9): p. 3253-65.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57778-
dc.description.abstract在臺灣及美國大腸直腸癌都位居癌症死因的第三位。百分之75的大腸直腸癌屬於偶發性,而其中有85%是由染色體變異所導致。染色體變異常造成大片段的基因漏失導致抑癌基因缺失而使癌症生成。利用失異合性(Loss of heterozygosity)方法分析第四號染色體,本實驗室先前研究發現PCDH10可能是大腸直腸癌的抑癌基因。PCDH10缺失不但與腫瘤進程及遠端轉移有關,而且可作為預測病人較差存活率的獨立因子。為進一步確認PCDH10具有抑癌功能,本研究將針對此基因進行抑癌功能鑑定並探討其抑癌的分子機制。利用反轉錄聚合酶鏈鎖反應偵測12個大腸直腸癌細胞株及53對臨床檢體發現:PCDH10表現量於12個大腸直腸癌細胞株無表現,而在41個腫瘤組織則是低表現,此結果再度支持PCDH10可能為抑癌基因。為證實PCDH10的抑癌功能,我們於大腸直腸癌細胞HCT116篩選穩定表現PCDH10之細胞株,並進行細胞體外及小鼠體內之抑癌功能測試。重新表現PCDH10於HCT116可以抑制癌細胞增生、胞落形成、移行及侵犯能力。利用皮下及脾臟注射之小鼠模式,發現PCDH10的表現可抑制HCT116於小鼠體內的生長及肝臟轉移能力;重要的是:脾臟注射表現PCDH10之癌細胞的小鼠其存活率較長。於分子機制方面,PCDH10可藉由降低AKT磷酸化並抑制beta-catenin核轉移而抑制癌細胞上皮間質轉化(Epithelial-to-Mesenchymal Transition),進而降低癌細胞之轉移能力;再者,PCDH10可使p53表現量增加而減緩細胞週期進行,進而抑制癌細胞之增生能力。zh_TW
dc.description.abstractColorectal cancer (CRC) is the third leading cause of cancer deaths in Taiwan and United States. Seventy-five percent of CRC is sporadic and 85% of them suffered chromosomal instability (CIN). Loss-of-function of tumor suppressor gene or gain-of-function of oncogene is a hallmark during tumor development. CIN results in frequent allelic loss and then loss of tumor suppressor genes. Our previous study showed that Protocadherin 10 (PCDH10), a novel tumor suppressor gene in human cancers, is located in one common deleted region at chromosome 4q28 in CRC. The genetic loss of PCDH10 was significantly associated with tumor progression and distant metastasis, as well as was an independent predictor of poor survival for CRC patients. This study aimed to explore the tumor suppressor function and molecular mechanisms of PCDH10. Expression of PCDH10 gene was silenced or markedly down-regulated in all of 12 CRC cell lines and 41 of 53 colorectal carcinomas compared with their matched normal mucosae. In addition, tumor suppressor activity of PCDH10 was identified by in vitro cell models and mouse xenograft tumor models. Ectopic expression of PCDH10 reduced cancer cell proliferation, anchorage-independent growth, migration, and invasion in vitro. Subcutaneous injection of PCDH10-expressing CRC cells in SCID mice showed alleviated tumor growth when compared with mock-inoculated mice. More importantly, via intrasplenic implantation, re-expression of PCDH10 in silenced cells restrained liver metastasis, and also improved survival in SCID mice. PCDH10 blockades epithelial-to-mesenchymal transition through inhibition of AKT phosphorylation and nuclear translocation of beta-catenin. In addition, PCDH10 suppresses cancer proliferation through up-regulation of p53 signaling and retardation of cell cycle progression.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:03:06Z (GMT). No. of bitstreams: 1
ntu-103-D97424006-1.pdf: 9256026 bytes, checksum: db62591ba27a623e9d33c8d459e6035b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
List of Figures VII
List of Tables IX
Abbreviation X
Chapter 1 Introduction 1
1.1 Colorectal cancer 1
1.2 Staging for colorectal cancer 1
1.3 Genetic and epigenetic alteration in colorectal tumorigenesis 3
1.4 Canonical Wnt signaling pathway in CRC 4
1.5 Epithelial-to-mesenchymal transition in CRC 6
1.6 PCDH10 is a candidate tumor suppressor gene in CRC 8
1.7 Protocadherin family 9
1.8 Nonclustered PCDHs 11
1.9 Protocadherin 10 (PCDH10, OL-PCDH) 14
1.10 Specific aims 15
Chapter 2 Materials and Methods 16
2.1 Antibodies 16
2.2 Cell lines and reagents 16
2.3 Generation of constitutive or inducible PCDH10-expressing stable clones 17
2.4 Generation of lentivirus vectors 17
2.5 DNA and RNA preparation 18
2.6 Semi-quantitative and quantitative real-time RT-PCR 18
2.7 Plasmid construction 19
2.8 Animal 19
2.9 Proliferation assay 19
2.10 Anchorage-independent growth assay 20
2.11 Wound healing assay 20
2.12 Matrigel invasion assay 20
2.13 Western blotting 21
2.14 Subcutaneous tumor model in SCID mice 21
2.15 Intrasplenic implantation in SCID mice 22
2.16 Immunofluorescence staining 22
2.17 Immunohistochemical staining 23
2.18 cDNA microarray analysis 23
2.19 TOPFlash reporter assay 24
2.20 Statistical analysis 24
Chapter 3 Results 25
3.1 PCDH10 is down-regulated in CRC cell lines and primary colorectal carcinomas 25
3.2 Establishment of constitutive and inducible PCDH10-expressing clones 25
3.3 PCDH10 inhibits cell proliferation, anchorage-independent growth, migration, and invasion in vitro 26
3.4 PCDH10 suppresses tumorigenesis in the immunodeficient mouse model of subcutaneous xenograft 27
3.5 PCDH10 restrains liver metastasis and prolongs survival in the immunodeficient mouse model of intrasplenic xenograft 27
3.6 Cytoplasmic domain of PCDH10 is responsible for tumor suppressor functions 28
3.7 Identification of PCDH10-mediated molecular mechanisms by cDNA microarray 29
3.8 PCDH10 represses
dc.language.isoen
dc.subjectPCDH10zh_TW
dc.subject肝臟轉移zh_TW
dc.subject抑癌基因zh_TW
dc.subject分子機制zh_TW
dc.subjectPCDH10en
dc.subjecttumor suppressor geneen
dc.subjectliver metastasisen
dc.subjectmolecular mechanismen
dc.titleProtocadherin 10於大腸直腸癌之抑癌功能鑑定及其分子機制探討zh_TW
dc.titleIdentification of Protocadherin 10 as a tumor suppressor and its molecular mechanisms in colorectal canceren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡明宏(Ming-Hong Tsai),蔡錦華(Ching-Hwa Tsai),林淑華(Shu-Wha Lin),何元順(Yuan-Soon Ho),俞松良(Sung-Liang Yu)
dc.subject.keywordPCDH10,抑癌基因,肝臟轉移,分子機制,zh_TW
dc.subject.keywordPCDH10,tumor suppressor gene,liver metastasis,molecular mechanism,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2014-07-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved