Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57759
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳惠文(Huei-Wen Chen)
dc.contributor.authorPei-Jung Leeen
dc.contributor.author李佩蓉zh_TW
dc.date.accessioned2021-06-16T07:02:00Z-
dc.date.available2019-07-16
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-07-15
dc.identifier.citation1. Siegel, R., et al., Cancer statistics, 2014. CA Cancer J Clin, 2014. 64(1): p. 9-29.
2. Ministry of Health and Welfare, Cancer statistics of Taiwan. 2012.
3. Molina, J.R., et al., Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-94.
4. Vineis, P., et al., Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst, 2004. 96(2): p. 99-106.
5. Gonda, T.A., S. Tu, and T.C. Wang, Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle, 2009. 8(13): p. 2005-13.
6. Kundu, J.K. and Y.J. Surh, Inflammation: gearing the journey to cancer. Mutat Res, 2008. 659(1-2): p. 15-30.
7. Herbst, R.S., J.V. Heymach, and S.M. Lippman, Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-80.
8. National cancer institute, Non-small cell lung cancer treatment (PDQR)-treatment options by stage. 2013.
9. Azzoli, C.G., S. Temin, and G. Giaccone, 2011 Focused update of 2009 American society of clinical oncology clinical practice guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Oncol Pract, 2012. 8(1): p. 63-6.
10. Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003. 22(47): p. 7265-79.
11. Chen, Y.M., et al., A phase II study of oral vinorelbine in combination with cisplatin conducted in Taiwan in patients with unresectable localized or metastatic non-small cell lung carcinoma. Lung Cancer, 2007. 56(1): p. 89-95.
12. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
13. Lundin, A. and B. Driscoll, Lung cancer stem cells: progress and prospects. Cancer Lett, 2013. 338(1): p. 89-93.
14. Ghajar, C.M., et al., The perivascular niche regulates breast tumour dormancy. Nat Cell Biol, 2013. 15(7): p. 807-17.
15. Schwitalla, S., et al., Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 2013. 152(1-2): p. 25-38.
16. Liu, Y.P., et al., Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res, 2013. 73(1): p. 406-16.
17. Shien, K., et al., Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer, 2012. 77(1): p. 162-7.
18. Levina, V., et al., Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One, 2008. 3(8): p. e3077.
19. Shi, M.M., et al., Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC. Tumour Biol, 2013. 34(3): p. 1503-10.
20. Mihatsch, J., et al., Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiother Oncol, 2011. 99(3): p. 300-6.
21. Park, C.H., D.E. Bergsagel, and E.A. McCulloch, Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst, 1971. 46(2): p. 411-22.
22. Bruce, W.R. and H. Van Der Gaag, A quantitive assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature, 1963. 199: p. 79-80.
23. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
24. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8.
25. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
26. Ho, M.M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007. 67(10): p. 4827-33.
27. Zhang, W.C., et al., Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell, 2012. 148(1-2): p. 259-72.
28. Tyler, V.E., Herbal remedies. . J. Pharm. Technol., 1995. 11: p. 214-220.
29. Kong, J.M., et al., Recent advances in traditional plant drugs and orchids. Acta Pharmacol Sin, 2003. 24(1): p. 7-21.
30. Schiff, P.B. and S.B. Horwitz, Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A, 1980. 77(3): p. 1561-5.
31. Chen, L.G., et al., Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res, 2008. 52(11): p. 1349-57.
32. Lee, Y.M., et al., Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol, 2011. 58(2): p. 133-42.
33. He, L., et al., Wogonin induced G1 cell cycle arrest by regulating Wnt/beta-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology, 2013. 312: p. 36-47.
34. Djulbegovic, B., I. Hozo, and J.A. Ioannidis, Improving the drug development process: More not less randomized trials. JAMA, 2014. 311(4): p. 355-356.
35. An, W.F. and N. Tolliday, Cell-based assays for high-throughput screening. Mol Biotechnol, 2010. 45(2): p. 180-6.
36. Sundberg, S.A., High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol, 2000. 11(1): p. 47-53.
37. Ru Zang, D.L., I-Ching Tang, Jufang Wang and Shang-Tian Yang, Cell-Based Assays in High-Throughput Screening for Drug Discovery. International Journal of Biotechnology for Wellness Industries, 2012. 1: p. 31-51.
38. Macarron, R., et al., Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov, 2011. 10(3): p. 188-95.
39. Kumar, S., et al., Efficacy of circulating plasma DNA as a diagnostic tool for advanced non-small cell lung cancer and its predictive utility for survival and response to chemotherapy. Lung Cancer, 2010. 70(2): p. 211-7.
40. Deiab, S., et al., High-Throughput Screening to Identify Plant Derived Human LDH-A Inhibitors. European J Med Plants, 2013. 3(4): p. 603-615.
41. Visnyei, K., et al., A molecular screening approach to identify and characterize inhibitors of glioblastoma stem cells. Mol Cancer Ther, 2011. 10(10): p. 1818-28.
42. Wang, Y.C., et al., Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One, 2013. 8(9): p. e74538.
43. Chen, W.J., et al., Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun, 2014. 5: p. 3472.
44. Tsuyada, A., et al., CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res, 2012. 72(11): p. 2768-79.
45. Lin, M.L., et al., Down-regulation of MMP-2 through the p38 MAPK-NF-kappaB-dependent pathway by aloe-emodin leads to inhibition of nasopharyngeal carcinoma cell invasion. Mol Carcinog, 2010. 49(9): p. 783-97.
46. Suboj, P., et al., Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-kappaB. Eur J Pharm Sci, 2012. 45(5): p. 581-91.
47. Eramo, A., T.L. Haas, and R. De Maria, Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 2010. 29(33): p. 4625-35.
48. Kobayashi, S., et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005. 352(8): p. 786-92.
49. Albini, A. and M.B. Sporn, The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer, 2007. 7(2): p. 139-47.
50. Jeter, C.R., et al., NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011. 30(36): p. 3833-45.
51. Chen, H.C., et al., Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem Toxicol, 2004. 42(8): p. 1251-7.
52. Ismail, S., et al., Enhanced induction of cell cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Nat Prod Res, 2013. 15(9): p. 1003-12.
53. Tabolacci, C., et al., Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16-F10 melanoma cells. Life Sci, 2010. 87(9-10): p. 316-24.
54. Lang, W., Pharmacokinetic-metabolic studies with 14C-aloe emodin after oral administration to male and female rats. Pharmacology, 1993. 47 Suppl 1: p. 110-9.
55. Pecere, T., et al., Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res, 2000. 60(11): p. 2800-4.
56. Tabolacci, C., et al., Aloe-emodin as antiproliferative and differentiating agent on human U937 monoblastic leukemia cells. Life Sci, 2011. 89(21-22): p. 812-20.
57. Liu, K., et al., Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis, 2012. 33(7): p. 1406-11.
58. Jeon, W., Y.K. Jeon, and M.J. Nam, Apoptosis by aloe-emodin is mediated through down-regulation of calpain-2 and ubiquitin-protein ligase E3A in human hepatoma Huh-7 cells. Cell Biol Int, 2012. 36(2): p. 163-7.
59. Lin, K.Y. and Y.H. Uen, Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells. Oncol Lett, 2010. 1(3): p. 541-547.
60. Lin, M.L., et al., Destabilization of CARP mRNAs by aloe-emodin contributes to caspase-8-mediated p53-independent apoptosis of human carcinoma cells. J Cell Biochem, 2011. 112(4): p. 1176-91.
61. Chiu, T.H., et al., Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells. Anticancer Res, 2009. 29(11): p. 4503-11.
62. Yang, Y., et al., Prognostic value of phospho-Akt in patients with non-small cell lung carcinoma: A meta-analysis. Int J Cancer, 2014.
63. Wang, H., et al., Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/beta-catenin/Snail signaling pathway. Eur J Pharmacol, 2014. 723: p. 156-66.
64. Martin, T., et al., Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur J Immunol, 1997. 27(5): p. 1091-7.
65. Deng, X., et al., Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-kappaB and activator protein-1. Int J Biochem Cell Biol, 2013. 45(7): p. 1366-76.
66. Garner, J.M., et al., Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappaB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem, 2013. 288(36): p. 26167-76.
67. Chen, R., et al., Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug Deliv, 2014.
68. Wang, T., et al., Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin. Int J Nanomedicine, 2012. 7: p. 2325-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57759-
dc.description.abstract肺癌是影響國人重大的疾病之一,根據行政院衛生福利部統計資料顯示,癌症病人中因肺癌死亡的人數佔所有癌症的第一名,若能找出治療肺癌的藥物對病人來說是一大福祉。目前治療肺癌的第一線用藥為Cisplatin,然而病人治療後癒後不佳,且常有復發的情況。近年來研究發現,癌症細胞中存在一群癌症幹細胞(Cancer stem cell),與抗藥性、遠端轉移和癌症復發有關。現有的化療藥物只能針對分裂比較快速的癌症細胞,對癌症幹細胞並沒有明顯治療效果,而導致癌症抗藥性與復發。因此,精確尋找出對癌症幹細胞有效之藥物,是目前癌症醫學研究當務之急。本研究目的即在發展針對肺癌幹細胞之抗癌藥物,單獨或合併現有化療藥物,找出更適合治療肺癌的治療方式。我們在in vitro實驗中,利用影像高速篩選系統 (Image-based high content screening system)來進行初步篩選,找尋能抑制肺癌幹細胞的藥物,我們在227種藥物中篩選出AE1024在1 μM 即能降低細胞幹細胞特性,並專一性的針對癌細胞(Cancer stem cell IC50 < 1 μM; cancer cells IC50 < 20 μM, BEAS2B: 26.77 μM, normal fibroblast: 39.13 μM),故選之為候選藥物;利用qPCR來發現細胞給予AE1024後,幹細胞標誌Nanog、Oct3/4、Sox2 mRNA的表現量下降。在in vivo實驗中,透過Xenograft模式來探討AE1024抑制腫瘤生成的能力,結果顯示,AE1024相較於控制組較能抑制腫瘤生長。綜合上述,AE1024為具有潛力針對肺癌幹細胞的藥物。未來也將繼續探討AE1024抑制肺癌幹細胞可能的機轉。zh_TW
dc.description.abstractLung cancer is the leading cause of cancers. Cisplatin is one of the first line chemotherapy for lung cancer currently. However, most of the patients have tumor relapse after therapy. Recently, cancer stem cells (CSCs) have been proposed to be responsible for drug resistance, tumor recurrence and metastasis. Conventional therapy targets at proliferative cells rather than CSCs. Therefore, we aim to find out potential compounds targeting on lung cancer stem cells. Using the image–based high content screening system to screen 227 compounds, we have identified AE1024 shows higher potency targeting on lung cancer stem cells (1 μM) and high specificity targeting on cancer stem cell (IC50 < 1 μM) and cancer cell lines (IC50 < 20 μM); compared to normal human bronchial epithelium cells and human normal fibroblast represented by IC50 (26.77 μM versus 39.13 μM). The level of stemness markers, Nanog, Oct3/4 and Sox2 were down-regulated after AE1024 treatment compared to cisplatin treatment. AE1024 could also suppress tumor initiating abilities and self-renew capacities represented by the ability to grow as tumors spheres. Furthermore, we found that AE1024 could inhibit tumor growth as comparing to control or cisplatin treatment in subcutaneous models in severe combined immunodeficient (NOD/SCID) mice. To sum up, AE1024 is a potential compound targeting on lung cancer stem cells. To discover the pharmacological mechanism of AE1024 on cancer stem cells will be helpful to develop new strategy for lung cancer therapy in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:02:00Z (GMT). No. of bitstreams: 1
ntu-103-R01447006-1.pdf: 4341041 bytes, checksum: 902afda7618181fa3ee48f37de68df04 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of contents
誌謝 I
中文摘要 II
Abstract IV
Introduction 1
Lung cancer 1
Current treatments to non-small cell lung cancer (NSCLC) 2
Cancer stem cells (CSCs) 2
Natural herbal compounds 4
High-through put screening 6
Materials and methods 8
Cell lines and chemicals 8
Proliferation assay 9
Immunofluorescence microscopy 9
Image-based high-content assay 10
Image acquisition and analysis 11
Ultra-low sphere-forming assay 11
ALDEFLUOR assay 12
Real-time reverse transcriptase (RT) Q-PCR 12
Gene expression profiling 13
In vivo study protocol 13
Immunohistochemistry 14
Statistical analysis 15
Results 16
Image–based high content screening identifies CSCs/CAFs forming colonies and other parameters. 16
CSCs/CAFs serve as a screening platform for anti-CSCs/CAF compounds. 17
High-throughput screening reveals AE1024 inhibit CSCs stemness expression. 17
AE1024 inhibits cell proliferation and suppresses lung cancer stemness. 18
AE1024 inhibits tumor growth and nanog expression in pretreatment xenografts model. 20
AE1024 inhibit tumor metastasis in xenografts model. 21
Transcriptomic analysis reveals possible mechanisms of AE1024 23
Discussion 25
Reference 55
dc.language.isoen
dc.subject抗藥性zh_TW
dc.subject癌症幹細胞zh_TW
dc.subject高速篩選zh_TW
dc.subject藥物開發zh_TW
dc.subjectCancer stem cellsen
dc.subjectDrug resistanceen
dc.subjectHigh content screeningen
dc.subjectDrug discoveryen
dc.title以高速篩選平台發展肺癌幹細胞專一性藥物-AE1024zh_TW
dc.titleHigh-throughput screening identified AE1024 as a potential lead targeting lung cancer stem cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊泮池(Pan-Chyr Yang),林泰元(Thai-Yen Ling),陳健尉(Jeremy J.W. Chen)
dc.subject.keyword癌症幹細胞,抗藥性,高速篩選,藥物開發,zh_TW
dc.subject.keywordCancer stem cells,Drug resistance,High content screening,Drug discovery,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2014-07-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved