請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57750完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張家勳(Chia-Hsuin Chang) | |
| dc.contributor.author | Yi-ling Shen | en |
| dc.contributor.author | 沈怡伶 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:01:30Z | - |
| dc.date.available | 2020-08-26 | |
| dc.date.copyright | 2020-08-26 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-20 | |
| dc.identifier.citation | 1. Christensen KL, Holman RC, Steiner CA, Sejvar JJ, Stoll BJ, Schonberger LB. Infectious disease hospitalizations in the United States. Clin Infect Dis 2009; 49:1025-35. 2. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed May 24, 2018. 3. Kennedy JL, Haberling DL, Huang CC, et al. Infectious Disease Hospitalizations: United States, 2001 to 2014. Chest 2019;156:255–268. 4. Saliba W, Barnett-Griness O, Rennert G. The association between obesity and urinary tract infection. Eur J Intern Med 2013;24: 127-31. 5. Norman D.C. (2001) Factors Predisposing to Infection. In: Yoshikawa T.T., Norman D.C. (eds) Infectious Disease in the Aging. Infectious Disease. Humana Press, Totowa, NJ. p 7-12. 6. Cegielski JP, Arab L, Cornoni-Huntley J. Nutritional risk factors for tuberculosis among adults in the United States, 1971-1992. Am J Epidemiol 2012;176: 409-422. 7. Veronese N, Cereda E, Solmi M et al. Inverse relationship between body mass index and mortality in older nursing home residents: a meta-analysis of 19,538 elderly subjects. Obes Rev 2015; 16: 1001-15. 8. Bhaskaran K, Dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol 2018; 6: 944-53. 9. Ramachandran P, Gopalan HS. Undernutrition risk of infections in preschool children. Indian J Med Res 2009;130:579–583. 10. Dorner TE, Schwarz F, Kranz A, Freidl W, Rieder A, Gisinger C. Body mass index and the risk of infections in institutionalised geriatric patients. Br J Nutr 2010;103:1830–1835. 11. Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin functions in infectious disease. Front Immunol 2018; 9:2741. 12. Sinha P, Davis J, Saag L, et al. Undernutrition and tuberculosis: public health implications. J Infect Dis 2019; 219: 1356-63. 13. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed February 16, 2019. 14. Huttunen R, Syrjänen J. Obesity and the risk and outcome of infection. Int J Obes 2013; 37: 333-40. 15. Morgan OW, Bramley A, Fowlkes A, et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PloS One 2010;5: e9694. 16. Louie JK, Acosta M, Samuel MC, et al. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1). Clin Infect Dis 2011;52:301–312. 17. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115: 911–9. 18. Frydrych LM, Bian G, O'Lone DE, Ward PA, Delano MJ. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol 2018;104: 525-34. 19. Enriori P, Evans AE, Sinnayah P, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007; 5: 181-94. 20. Mancuso P. Obesity and respiratory infections: does excess adiposity weigh down host defense? Pulm Pharmacol Ther 2013; 26: 412-9. 21. Kornum JB, Norgaard M, Dethlefsen C, et al. Obesity and risk of subsequent hospitalisation with pneumonia. Eur Respir J 2010;36: 1330-36. 22. Almirall J, Bolibar I, Balanzo X, Gonzalez CA. Risk factors for community-acquired pneumonia in adults: a population-based case-control study. Eur Respir J 1999;13: 349-55. 23. Semins MJ, Shore AD, Makary MA, Weiner J, Matlaga BR. The impact of obesity on urinary tract infection risk. Urology 2012;79: 266-69. 24. Rosemar A, Angeras U, Rosengren A. Body mass index and diverticular disease: a 28-year follow-up study in men. Dis Colon Rectum 2008;51: 450-55. 25. Mirmirani P, Carpenter DM. Skin disorders associated with obesity in children and adolescents: a population-based study. Pediatr Dermatol 2014;31: 183-90. 26. Ribera MC, Pascual R, Orozco D, Perez Barba C, Pedrera V, Gil V. Incidence and risk factors associated with urinary tract infection in diabetic patients with and without asymptomatic bacteriuria. Eur J Clin Microbiol Infect Dis 2006; 25: 389–393. 27. Basu JK, Jeketera CM, Basu D. Obesity and its outcomes among pregnant South African women. Int J Gynaecol Obstet 2010; 110: 101–104. 28. Braun N, Hoess C, Kutz A, et al. Obesity paradox in patients with community-acquired pneumonia: Is inflammation the missing link? Nutrition 2017;33: 304-10. 29. Chen J, Wang J, Jiang H, et al. Lower long-term mortality in obese patients with community-acquired pneumonia: possible role of CRP. Clinics (Sao Paulo, Brazil) 2019;74: e608. 30. Phung DT, Wang Z, Rutherford S, Huang C, Chu C. Body mass index and risk of pneumonia: a systematic review and meta-analysis. Obes Rev 2013;14: 839-857. 31. Harpsoe MC, Nielsen NM, Friis-Moller N, et al. Body Mass Index and Risk of Infections Among Women in the Danish National Birth Cohort. Am J Epidemiol 2016;183:1008-1017. 32. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analysis: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–1012. 33. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation [published correction appears in BMJ. 2016 Jul 21;354:i4086]. BMJ 2015;350:g7647. 34. Andreas S. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–05. 35. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992;135:1301-1309. 36. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effects and random-effects models for meta-analysis. Res Synth Methods 2010; 97–111. 37. Desquilbet, Mariotti. Dose-response analyses using restricted cubic spline functions in public health research. Statistics in medicine 2010: 29:1037-57. 38. Sung R S, Lee J. Dose-response meta-analysis: application and practice using the R software. Epidemiol Health 2019;41:e2019006. 39. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 2012;175:66–73. 40. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560. 41. Rothstein H, Sutton AJ, Borenstein M. Publication Bias in Meta-analysis: Prevention, Assessment and Adjustment. John Wiley Sons Inc.: Hoboken, NJ, 2005. 42. Egger M, Smith GD, Schneider M, Minder C. Bias in metaanalyis detected by a simple, graphical test. BMJ 1997; 315: 629– 634. 43. Kato I, Nomura A, Stemmermann GN, Chyou PH. Prospective study of clinical gallbladder disease and its association with obesity, physical activity, and other factors. Dig Dis Sci. 1992; 37: 784-90. 44. Liu B, Balkwill A, Spencer E, Beral V, Million Women Study C. Relationship between body mass index and length of hospital stay for gallbladder disease. J Public Health (Oxf). 2008;30: 161-166. 45. Ghilotti F, Bellocco R, Ye W, Adami HO, Trolle Lagerros Y. Obesity and risk of infections: results from men and women in the Swedish National March Cohort. Int J Epidemiol 2019; 48: 1783-94. 46. Baik I, Curhan GC, Rimm EB, Bendich A, Willett WC, Fawzi WW. A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med 2000;160: 3082-88. 47. Kwong JC, Campitelli MA, Rosella LC. Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study. Clin Infect Dis 2011;53: 413-21. 48. Blumentals WA, Nevitt A, Peng MM, Toovey S. Body mass index and the incidence of influenza-associated pneumonia in a UK primary care cohort. Influenza Other Respir Viruses 2012;6: 28-36. 49. Phung DT, Wang Z. Risk of pneumonia in relation to body mass index in Australian Aboriginal people. Epidemiol Infect 2013;141: 2497-2502. 50. Reeves GK, Balkwill A, Cairns BJ, Green J, Beral V. Hospital admissions in relation to body mass index in UK women: a prospective cohort study. BMC Med 2014;12: 45. 51. Kaspersen KA, Pedersen OB, Petersen MS, et al. Obesity and Risk of Infection: Results from the Danish Blood Donor Study. Epidemiology 2015;26: 580-89. 52. Karki S, Muscatello DJ, Banks E, MacIntyre CR, McIntyre P, Liu B. Association between body mass index and laboratory-confirmed influenza in middle aged and older adults: a prospective cohort study. Int J Obes (Lond) 2018;42: 1480-88. 53. Strate LL, Liu YL, Aldoori WH, Syngal S, Giovannucci EL. Obesity increases the risks of diverticulitis and diverticular bleeding. Gastroenterology 2009;136: 115-22.e111. 54. Hjern F, Wolk A, Hakansson N. Obesity, physical inactivity, and colonic diverticular disease requiring hospitalization in women: a prospective cohort study. Am J Gastroenterol 2012;107: 296-302. 55. Jamal Talabani A, Lydersen S, Ness-Jensen E, Endreseth BH, Edna TH. Risk factors of admission for acute colonic diverticulitis in a population-based cohort study: The North Trondelag Health Study, Norway. World J Gastroenterol 2016;22: 10663-72. 56. Ma W, Jovani M, Liu PH, et al. Association Between Obesity and Weight Change and Risk of Diverticulitis in Women. Gastroenterology 2018;155: 58-66.e54. 57. Hemilä H, Kaprio J, Pietinen P, Albanes D, Heinonen OP. Vitamin C and other compounds in vitamin C rich food in relation to risk of tuberculosis in male smokers. Am J Epidemiol 1999; 150: 632-41. 58. Leung CC, Lam TH, Chan WM et al. Lower risk of tuberculosis in obesity. Arch Intern Med 2007; 167: 1279-304. 59. Yen YF, Hu HY, Lee YL, et al. Obesity/overweight reduces the risk of active tuberculosis: a nationwide population-based cohort study in Taiwan. Int J Obes (Lond) 2017;41: 971-75. 60. Kim SJ, Ye S, Ha E, Chun EM. Association of body mass index with incident tuberculosis in Korea. PLoS One 2018;13: e0195104. 61. Lin HH, Wu CY, Wang CH, et al. Association of Obesity, Diabetes, and Risk of Tuberculosis: Two Population-Based Cohorts. Clin Infect Dis 2018;66: 699-705. 62. Inoue Y, Koizumi A, Wada Y, Risk and Protective Factors Related to Mortality from Pneumonia among Middle-aged and Elderly Community Residents: The JACC Study. J Epidemiol 2007: 17: 194-202. 63. Takata Y, Ansai T, Soh I, et al. Association between body mass index and mortality in an 80-year-old population. J Am Geriatr Soc 2007;55: 913-17. 64. Hamer M, O'Donovan G, Stamatakis E. Lifestyle risk factors, obesity and infectious disease mortality in the general population: Linkage study of 97,844 adults from England and Scotland. Prev Med 2019;123: 65-70. 65. Yang L, Chan KP, Lee RS, et al. Obesity and influenza associated mortality: evidence from an elderly cohort in Hong Kong. Prev Med 2013;56: 118-23. 66. Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q. Obesity survival paradox in pneumonia: A meta-analysis. BMC Med 2014;12:61. 67. Kennedy R.S. (2008) Nutrition in order adults: An overview. In: Bernhardt NE, Kasko AM. (eds) Nutrition for the Middle Aged and Elderly. Nova Science Publishers. p285-298. 68. Alti D, Sambamurthy C, Kalangi SK. Emergence of leptin in infection and immunity: scope and challenge in vaccine formulation. Front Cell Infect Microbiol 2018;8:147. 69. Moore SI, Huffnagle GB, Chen GH, White ES, Mancuso P. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect. Immun 2003;71:4182-85. 70. Mancuso P., Gottschalk A., Phare, SM., Peters-Golden M., Lukacs NW., Huffnagle G. B. Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. J. Immunol 2002;168:4018–24 71. Hedlund J, Hansson L, Ortqvist A. Short- and long-term prognosis for middle-aged and elderly patients hospitalized with community-acquired pneumonia: impact of nutritional and inflammatory factors. Scand J Infect Dis 1995; 27:32–37. 72. Riquelme R, Torres A, Al-Ebiary M et al. Community-acquired pneumonia in the elderly: clinical and nutritional aspects. Am J Respir Crit Care Med 1997;156:1908–1914. 73. Engelen MP, Schols AM, Baken WC, et al. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J 1994;7:1793e7. 74. Ubags ND, Vernooy JH, Burg E et al. The role of leptin in the development of pulmonary neutrophilia in infection and Acute Lung Injury. Crit Care Med 2014 Feb; 42(2): e143–e151. 75. Smith AG, Sheridan PA, Harp JB, Beck MA. Die-induced obese mice have increased mortality and altered immune response when infected with influenza virus. J Nutr 2007;137:1236-43. 76. Karlsson EA, Sheridan PA, Beck MA. Diet -induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. J Nutr 2010;140:1691-7. 77. LaCroix AZ, Lipson S, Miles TP, White L. Prospective study of pneumonia hospitalizations and mortality of U.S. older people: the role of chronic conditions, health behaviors, and nutritional status. Public Health Rep 1989;104:350‐60. 78. Vessey MP, Metcalfe MA, McPherson K, Yeates D. Urinary tract infection in relation to diaphragm use and obesity. Int J Epidemiol 1987;16:441‐4. 79. Giovannucci E, Rimm EB, Chute CG, Kawachi I, Colditz GA, Stampfer MJ, et al. Obesity and benign prostatic hyperplasia. Am J Epidemiol 1994;140: 989–1002. 80. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased Estrogen Production in Obese Men. J Clin Endocrinol Metab 1979;48:633-38. 81. Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011;82:184-99. 82. Aune D, Sen A, Leitzmann MF, Norat T, Tonstad S, Vatten LJ. Body mass index and physical activity and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur J Nutr 2017;56:2423-38. 83. Park M, Song DY, Je Y, Lee JE. Body mass index and biliary tract disease: a systematic review and meta-analysis of prospective studies. Prev Med. 2014;65:13-22. 84. Painter NS , Burkitt DP . Diverticular disease of the colon: a deficiency disease of Western civilization . Br Med J 1971;2:450 – 4 . 85. Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity 2006;14:1353-62. 86. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-3. 87. Andoh A, Nishida A, Takahashi K, et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr 2016;59:65‐70. 88. Lonnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol 2010;39:149-155. 89. Patra J, Jha P, Rehm J, Suraweera W. Tobacco smoking, alcohol drinking, diabetes, low body mass index and the risk of self-reported symptoms of active tuberculosis: individual participant data (IPD) meta-analyses of 72,684 individuals in 14 high tuberculosis burden countries. PloS One 2014;9: e96433. 90. Chan J, Tian Y, Tanaka KE, et al. Effects of protein calorie malnutrition on tuberculosis in mice. Proc Natl Acad Sci U S A 1996; 93:14857–61. 91. Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 2006; 1:e43. 92. Pepper DJ, Sun J, Welsh J, Cui X, Suffredini AF, Eichacker PQ. Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care 2016;20:181. 93. Wang S, Liu X, Chen Q, Liu C, Huang C, Fang X. The role of increased body mass index in outcomes of sepsis: a systematic review and meta-analysis. BMC Anesthesiol 2017;17:118. 94. Kvamme JM, Holmen J, Wilsgaard T, Florholmen J, Midthjell K, Jacobsen BK. Body mass index and mortality in elderly men and women: the Tromso and HUNT studies. J Epidemiol Community Health 2012;66:611-7. 95. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J 1999;13:1177–88. 96. Takahashi H., Tsuda Y., Takeuchi D., Kobayashi M., Herndon D. N., Suzuki, F. Influence of systemic inflammatory response syndrome on host resistance against bacterial infections. Crit. Care Med 2004;32:1879–1885. 97. Tschöp, J., Nogueiras, R., Haas-Lockie, S. et al. CNS leptin action modulates immune response and survival in sepsis. J Neurosci 2010; 30: 6036–47. 98. Van de Garde EM, Oosterheert JJ, Bonten M, Kaplan RC, Leufkens HG: International classification of diseases codes showed modest sensitivity for detecting community-acquired pneumonia. J Clin Epidemiol 2007; 60:834–38. 99. Drahos J, Vanwormer JJ, Greenlee RT, Landgren O, Koshiol J. Accuracy of ICD-9-CM codes in identifying infections of pneumonia and herpes simplex virus in administrative data. Ann Epidemiol 2013;23:291‐293. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57750 | - |
| dc.description.abstract | 背景 社區型感染症造成全球廣泛的發病率和死亡率,並且反映在住院人數的增加,為醫療體系帶來巨大的經濟負擔。長期以來體重不足一直被認為是營養不良的代表,也是引發學齡前兒童與老年人族群中社區型感染(community-acquired infections, 簡稱CAIs)的危險因子。肥胖則被認為與2009年全球H1N1 A型流感相關的住院率跟死亡相關,然而身體質量指數(body mass index,簡稱BMI)與常見CAIs的相關性尚未有清楚的定論。本研究將對BMI與社區型肺炎(community-acquired pneumonia,簡稱CAP)、泌尿道感染(urinary tract infections, 簡稱UTIs)、腹腔內感染(intra-abdominal infections,簡稱IAIs)、活動型結核菌(active tuberculosis,簡稱active TB)、真菌感染以及感染症相關長期死亡率之相關性進行系統性回顧與統合分析。 方法 我們使用關鍵字在三大文獻資料庫PubMed, Embase和Cochrane Library搜尋至2019年7月31日前發表的研究,並且只將世代研究納入分析。統合分析的過程將BMI轉換成連續變項,使用劑量效應分析觀察BMI與常見CAIs在線性模型下的趨勢,並採用隨機效應模型合併單一研究的相對風險值。在非線性模型中,我們使用restricted cubic spline模型分析兩者之間的關係。I2用來評估研究間的異質性,Egger’s test 用來評估是否有出版偏差,並使用次群組分析和meta-regression 分析試圖找出潛在異質性的來源。利用Newcastle-Ottawa quality assessment來評估觀察性研究的偏差風險。 結果 起初搜尋到5920篇文獻,最終有七篇討論BMI與CAP(n=2885663),一篇討論UTIs(n=230410),七篇探討IAIs(n=1547312),沒有單純探討真菌感染相關文獻,二篇探討多重部位感染,六篇active TB(n=597666),四篇感染症相關長期死亡率(n=276153),總共收錄27篇世代研究。本研究結果發現統合的相對風險顯示BMI與CAP呈現J型曲線,轉折點落在BMI 25-30 kg/m2; BMI與UTIs風險呈現線性正相關,每增加五單位的BMI可增加5%的UTI風險(RR=1.05, 95%CI 1.00-1.10, I2=84%); 每增加五單位BMI所得到IAIs的相對風險為1.29(95%CI 1.19-1.39, I2= 83%),為線性正相關; 每增加五單位的BMI得到活動型肺結核的統合相對風險為0.62(95%CI 0.44-0.89, I2=99%),呈現線性負向關係;本研究也看到BMI與感染相關長期死亡率之風險呈現負向關係,觀察到肥胖矛盾的現象。從我們的研究中發現身高與體重取得方式可能為BMI與腹腔內感染以及活動性肺結核高度異質性的來源,卻沒有找到潛在BMI與感染症的修飾因子。 結論 這是第一篇以成人族群為對象探討BMI與常見社區型感染症相關性的統合分析。從我們的結果顯示,除了擬定對抗肥胖的策略外,成人體重不足的相關議題值得關注並加以預防。然而在肺結核感染的成人高風險群中,其健康的身高體重範圍定義相較其他常見社區型感染症可能有所不同。 | zh_TW |
| dc.description.abstract | Background Community-acquired Infections (CAIs) cause widespread morbidity and mortality which reflected increased hospital admission with a significant growing economic burden. Underweight has long been a proxy of undernutrition and was possible a risk factor of CAIs in preschool and the elderly, while obesity has just known a risk factor after 2009 pandemic influenza A. The effect body mass index (BMI) on common CAIs in adults is unclear. We conducted a systematic review and meta-analysis of the risk of community-acquired pneumonia (CAP), urinary tract infections (UTIs), intra-abdominal infections (IAIs), active tuberculosis (TB), fungal infection, and infection-related long-term mortality for BMIs. Materials and Methods Published studies were searched form PubMed, Embase and Cochrane Library through July 31, 2019 using key words. We only included cohort studies and used dose-response analysis to observe the linear associations between BMI and the risk of CAIs from individual study after converting BMI to continuous data. Random-effects analysis was applied to pool the effect size of each study. We also used restricted cubic spline (RCS) model in our meta-analysis as our non-linear model assumption to fit the relationship of BMI and CAIs. I2 was used to evaluate heterogeneity, and Egger’s test was performed to evaluate the publication bias. Subgroup analysis and meta-regression were also applied to quantify the potential source of heterogeneity between studies. Risk of bias was assessed using Newcastle-Ottawa quality assessment scale for cohort studies. Results A total of 5920 articles were in the initial search, and there were total 27 cohort studies met our inclusion criteria. Two cohort studies for BMI and multiple body parts for infection risk provided data for CAP, UTIs, IAIs and fungal infections. Nine cohort studies assessing the relationship between BMI and CAP risk (n=2885663), three cohort study for BMI and UTIs risk (n=230410), nine cohort studies for BMI and IAIs risk (n=1547312), one cohort study for BMI and fungal infections (n=37808), six cohort studies for BMI and active tuberculosis (n=549729), and four cohort studies for BMI and infections-related long-term mortality (n=276153). The pooled relative risk (RR) and RCS model revealed a J-shaped relationship between BMI and CAP with a change point falling on BMI 25-30 kg/m2. The positive linear association was noted between BMI and the risk of UTIs with 5% increase in the RR of UTIs for each 5 units increase in BMI (RR= 1.05, 95%CI 1.00-1.10, I2=84%). The summary RR of IAIs for a 5-unit BMI increment was 1.29 (95%CI 1.19-1.39, I2=84%) which revealed linear positive association between BMI and IAIs risk. The pooled RR was 0.54 (95%CI 0.47-0.61, I2=92%) if active TB for a 5-unit increase in BMI showing an inverse linear relationship between BMI and the risk of active TB. We also found that there was an inverse non-linear relationship between BMI and infection-related long-term mortality risk (RR=0.62, 95%CI 0.44-0.89, I2=99%). Assessment of weight and height may explain high heterogeneity between studies of BMI and IAIs, or active TB, but we did not find definite effect modifier between BMI and infections discussed in our study. Conclusions This is the first meta-analysis to define the association between BMI and common CAIs in adults. These results suggest that not only do we have to make strategies for combating obesity but also preventing underweight in adults. However, the healthy weight-for height bands could be defined differently in risky TB infected population. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:01:30Z (GMT). No. of bitstreams: 1 U0001-1707202011483400.pdf: 4824928 bytes, checksum: e83171d8a72a2fa8742961438528590f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝…………………………………………………………………………………...1 中文摘要……………………………………………………………………………...2 英文摘要……………………………………………………………………………...4 第一章 研究背景 1.1 感染症流行病學…………………………………………………………...10 1.2 感染症與營養的相關性…………………………………………………...10 1.2.1 體重不足、肥胖與感染症……………………………………………10 1.3 研究目的…………………………………………………………………...11 第二章 研究材料與方法……………………………………………………….......12 2.1 文獻搜尋…………………………………………………………………...12 2.2 文獻選取…………………………………………………………………...12 2.3 文獻資料擷取……………………………………………………………...13 2.4 文獻品質的評讀…………………………………………………………...13 2.5 文獻資料數據整合與統計分析…………………………………………...14 第三章 結果 3.1 文獻搜尋結果……………………………………………………………...15 3.2 文獻特色…………………………………………………………………...16 3.3 文獻數據定量與整合 3.3.1 身體質量指數與社區型肺炎之風險…………………………………17 3.3.2 身體質量指數與泌尿道感染之風險…………………………………18 3.3.3 身體質量指數與腹腔內感染之風險…………………………………18 3.3.4 身體質量指數與真菌感染之風險……………………………………19 3.3.5 身體質量指數與活動性肺結核感染之風險…………………………19 3.3.6 身體質量指數與感染症相關長期死亡率之風險……………………20 第四章 討論………………………………………………………………………...20 4.1 身體質量指數與社區型肺炎……………………………………………...20 4.2 身體質量指數與泌尿道感染……………………………………………...22 4.3 身體質量指數與腹腔內感染……………………………………………...23 4.4 身體質量指數與活動型肺結核…………………………………………...23 4.5 身體質量指數與感染症相關長期死亡率…………………………….......24 4.6 研究優點與限制…………………………………………………………...25 第五章 結論與公共衛生應用………………………………………………….…..26 圖…………………………………………………………………………………….27 表…………………………………………………………………………………….35 附錄………………………………………………………………………………….48 參考文獻…………………………………………………………………….………75 圖表目錄 圖1 文獻納入與排除流程圖……………………………………………………….27 圖2 體重不足、肥胖與社區型肺炎、泌尿道感染、腹腔內感染、活動型肺結核、感染相關長期死亡率關係之森林圖(隨機效應模型)……………………………...28 圖3 身體質量指數與特定社區型感染相對風險關係之線性劑量反應分析森林圖(每五個身體質量指數為單位)與非線性劑量反應曲線(restricted cubic spine模型)…………………………………………………………………………………....31 圖4 身高體重取得方式和身體質量指數與社區型肺炎與腹腔內感染風險的meta-regression 泡泡圖……………………………………………………………..34 表1 收錄文獻資訊整理…………………………………………………………….35 表2 身體質量指數與社區型肺炎、泌尿道感染、腹腔內感染、活動性肺結核和感染相關長期死亡率之次群組分析……………………………………………….44 附錄目錄 附錄1 PRISMA清單………………………………………………………………..48 附錄2搜尋文獻過程使用的關鍵字、MeSH term、Emtree與搜尋策略………...51 附錄3收錄文獻之Newcastle-Ottawa Quality Assessment評分內容……………...53 附錄4身體質量指數與特定社區型感染症之漏斗圖……………………………..60 附錄5身體質量指數與特定社區型感染症之留一驗證統合分析………………..62 附錄6重要共變數與BMI和特定社區型感染症風險之meta-regression analyses . …………………………………………………………………………….64 附錄7體重不足與社區型肺炎之次群組分析森林圖…………………………………..66 附錄8肥胖與社區型肺炎之次群組分析森林圖…………………………………..67 附錄9肥胖與泌尿道感染之次群組分析森林圖…………………………………..68 附錄10體重不足與腹腔內感染之次群組分析森林圖……………………………69 附錄11肥胖與腹腔內感染之次群組分析森林圖…………………………………70 附錄12體重不足與活動性肺結核之次群組分析森林圖…………………………71 附錄13肥胖與活動性肺結核之次群組分析森林圖………………………………72 附錄14體重不足與感染症相關長期死亡率之次群組分析森林圖………………73 附錄15肥胖與感染症相關長期死亡率之次群組分析森林圖……………………74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 身體質量指數 | zh_TW |
| dc.subject | 社區型肺炎 | zh_TW |
| dc.subject | 泌尿道感染 | zh_TW |
| dc.subject | 腹腔內感染 | zh_TW |
| dc.subject | 活動型肺結核 | zh_TW |
| dc.subject | 統合分析 | zh_TW |
| dc.subject | 體重不足 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 感染症相關死亡率 | zh_TW |
| dc.subject | infection-related mortality | en |
| dc.subject | intra-abdominal infection | en |
| dc.subject | urinary tract infection | en |
| dc.subject | community-acquired pneumonia | en |
| dc.subject | active tuberculosis | en |
| dc.subject | meta-analysis | en |
| dc.subject | underweight | en |
| dc.subject | body mass index | en |
| dc.subject | obesity | en |
| dc.title | 成人族群身體質量指數與特定社區型感染症及感染症相關長期死亡率相關性:系統性回顧與統合分析 | zh_TW |
| dc.title | The association between body mass index and the risk of site-specific community-acquired infections and infection-related long-term mortality in adults: a systematic review and meta-analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林先和(Hsien-Ho Lin) | |
| dc.contributor.oralexamcommittee | 杜裕康(Yu-Kang Tu),簡國龍(Kuo-Liong Chien),羅偉成(Wei-Cheng Lo) | |
| dc.subject.keyword | 社區型肺炎,泌尿道感染,腹腔內感染,活動型肺結核,感染症相關死亡率,身體質量指數,肥胖,體重不足,統合分析, | zh_TW |
| dc.subject.keyword | community-acquired pneumonia,urinary tract infection,intra-abdominal infection,active tuberculosis,infection-related mortality,body mass index,obesity,underweight,meta-analysis, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202001591 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-21 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1707202011483400.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
