Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57748
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳丕燊(Pisin Chen)
dc.contributor.authorChe-Yu Chenen
dc.contributor.author陳哲佑zh_TW
dc.date.accessioned2021-06-16T07:01:23Z-
dc.date.available2014-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-15
dc.identifier.citation[1] M. Bouhmadi-Lopez, C. -Y. Chen and P. Chen, Is Eddington-Born-Infeld theory really
free of cosmological singularities?, Eur. Phys. J. C 74, 2802 (2014).
[2] M. Bouhmadi-Lopez, C. Y. Chen, P. Chen, work in progress.
[3] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, (W. H. Freeman, 1973).
[4] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge
University Press, 1973).
[5] G. Hinshaw, et al. [WMAP Collaboration], Nine-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, arXiv:
1212.5226 [astro-ph.CO]; P. A. R. Ade et al. [Planck Collaboration], Planck 2013
results. XVI. Cosmological parameters, arXiv:1303.5076 [astro-ph.CO].
[6] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of
Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517, 565 (1999);
A. G. Riess et al. [Supernova Search Team Collaboration], Observational evidence
from supernovae for an accelerating universe and a cosmological constant, Astron.
J. 116, 1009 (1998); N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah,
K. Barbary, L. F. Barrientos and J. Botyanszki et al., The Hubble Space Telescope
Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1
and Building an Early-Type-Hosted Supernova Sample, Astrophys. J. 746, 85 (2012).
[7] M. Tegmark et al. [SDSS Collaboration], Cosmological parameters from SDSS and
WMAP, Phys. Rev. D 69, 103501 (2004). M. Tegmark et al. [SDSS Collaboration],
Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys. Rev. D
74, 123507 (2006) L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton,
A. S. Bolton, J. Brinkmann and J. R. Brownstein et al., Mon. Not. Roy. Astron. Soc.
428, 1036 (2013)
[8] M. G. Dainotti, V. F. Cardone, E. Piedipalumbo and S. Capozziello, Slope evolution
of GRB correlations and cosmology, arXiv:1308.1918 [astro-ph.HE].
[9] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S. A. Stanford, Cosmic
Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements,
JCAP 1002, 008 (2010).
[10] P. A. R. Ade et al. [BICEP2 Collaboration], BICEP2 I: Detection Of B-mode Polarization
at Degree Angular Scales arXiv:1403.3985 [astro-ph.CO].
[11] E. W. Kolb, and M. S. Turner, The Early Universe, (Addison-Wesley, 1990).
[12] A. Y. Kamenshchik, Quantum cosmology and late-time singularities, Class. Quant.
Grav. 30, 173001 (2013)
[13] A. A. Starobinsky, Future and origin of our universe: Modern view, Grav. Cosmol.
6, 157 (2000).
[14] R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phantom energy and cosmic
doomsday, Phys. Rev. Lett. 91, 071301 (2003).
[15] R. R. Caldwell, A Phantom menace?, Phys. Lett. B 545, 23 (2002).
[16] S. M. Carroll, M. Hoffman and M. Trodden, Can the dark energy equation - of - state
parameter w be less than -1?, Phys. Rev. D 68, 023509 (2003).
[17] L. P. Chimento and R. Lazkoz, On the link between phantom and standard cosmologies,
Phys. Rev. Lett. 91, 211301 (2003).
[18] M. P. Da̧browski, T. Stachowiak and M. Szydłowski, Phantom cosmologies, Phys.
Rev. D 68, 103519 (2003).
[19] P. F. Gonzalez-Diaz, K-essential phantom energy: Doomsday around the corner?,
Phys. Lett. B 586, 1 (2004).
[20] P. F. Gonzalez-Diaz, Axion phantom energy, Phys. Rev. D 69, 063522 (2004).
[21] V. Gorini, A. Y. Kamenshchik, U. Moschella and V. Pasquier, Tachyons, scalar fields
and cosmology, Phys. Rev. D 69, 123512 (2004).
[22] J. D. Barrow, Sudden future singularities, Class. Quant. Grav. 21, L79 (2004).
[23] S. ’i. Nojiri, S. D. Odintsov and S. Tsujikawa, Properties of singularities in (phantom)
dark energy universe, Phys. Rev. D 71, 063004 (2005).
[24] M. Bouhmadi-Lopez, P. F. Gonzalez-Diaz and P. Martin-Moruno, On the generalised
Chaplygin gas: Worse than a big rip or quieter than a sudden singularity?, Int. J.
Mod. Phys. D 17, 2269 (2008).
[25] M. Bouhmadi-Lopez, P. F. Gonzalez-Diaz and P. Martin-Moruno, Worse than a big
rip?, Phys. Lett. B 659, 1 (2008).
[26] S. ’i. Nojiri and S. D. Odintsov, Inhomogeneous equation of state of the universe:
Phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D 72,
023003 (2005).
[27] S. ’i. Nojiri and S. D. Odintsov, The Final state and thermodynamics of dark energy
universe, Phys. Rev. D 70, 103522 (2004).
[28] S. ’i. Nojiri and S. D. Odintsov, The Future evolution and finite-time singularities in
F(R)-gravity unifying the inflation and cosmic acceleration, Phys. Rev. D 78, 046006
(2008).
[29] K. Bamba, S. ’i. Nojiri and S. D. Odintsov, The Universe future in modified gravity
theories: Approaching the finite-time future singularity, JCAP 0810, 045 (2008).
[30] T. Ruzmaikina and A. A. Ruzmaikin, Sov. Phys. JETP 30, 372 (1970).
[31] H. Štefančić, Expansion around the vacuum equation of state - Sudden future singularities
and asymptotic behavior, Phys. Rev. D 71, 084024 (2005).
[32] M. Bouhmadi-Lopez, Phantom-like behaviour in dilatonic brane-world scenario
with induced gravity, Nucl. Phys. B 797, 78 (2008).
[33] P. H. Frampton, K. J. Ludwick and R. J. Scherrer, The Little Rip, Phys. Rev. D 84,
063003 (2011).
[34] I. Brevik, E. Elizalde, S. Nojiri and S. D. Odintsov, Viscous Little Rip Cosmology,
Phys. Rev. D 84, 103508 (2011).
[35] P. H. Frampton, K. J. Ludwick, S. ’i. Nojiri, S. D. Odintsov and R. J. Scherrer, Models
for Little Rip Dark Energy, Phys. Lett. B 708, 204 (2012).
[36] S. ’i. Nojiri, S. D. Odintsov and D. Saez-Gomez, Cyclic, ekpyrotic and little rip
universe in modified gravity, AIP Conf. Proc. 1458, 207 (2011).
[37] S. ’i. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational
alternative for dark energy, eConf C 0602061, 06 (2006) [Int. J. Geom. Meth. Mod.
Phys. 4, 115 (2007)]. S. Capozziello and M. Francaviglia, Extended Theories of
Gravity and their Cosmological and Astrophysical Applications, Gen. Rel. Grav. 40,
357 (2008). T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010); A. De
Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13, 3 (2010); S. Capozziello
and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509, 167 (2011).
[38] D. N. Vollick, Palatini approach to Born-Infeld-Einstein theory and a geometric
description of electrodynamics, Phys. Rev. D 69, 064030 (2004).
[39] D. N. Vollick, Born-Infeld-Einstein theory with matter, Phys. Rev. D 72, 084026
(2005).
[40] M. Banados and P. G. Ferreira, Eddington’s theory of gravity and its progeny, Phys.
Rev. Lett. 105, 011101 (2010).
[41] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge University
Press (1924).
[42] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond.
A 144, 425 (1934).
[43] S. Deser and G. W. Gibbons, Born-Infeld-Einstein actions?, Class. Quant. Grav. 15,
L35 (1998).
[44] J. H. C. Scargill, M. Banados and P. G. Ferreira, Cosmology with Eddington-inspired
Gravity, Phys. Rev. D 86, 103533 (2012).
[45] P. P. Avelino and R. Z. Ferreira, Bouncing Eddington-inspired Born-Infeld cosmologies:
an alternative to Inflation ?, Phys. Rev. D 86, 041501 (2012).
[46] C. Escamilla-Rivera, M. Banados and P. G. Ferreira, A tensor instability in the Eddington
inspired Born-Infeld Theory of Gravity, Phys. Rev. D 85, 087302 (2012).
[47] K. Yang, X. -L. Du and Y. -X. Liu, Linear perturbations in Eddington-inspired Born-
Infeld gravity, Phys. Rev. D 88, 124037 (2013).
[48] X. -L. Du, K. Yang, X. -H. Meng and Y. -X. Liu, Large Scale Structure Formation
in Eddington-inspired Born-Infeld Gravity, arXiv:1403.0083 [gr-qc].
[49] S. -W. Wei, K. Yang and Y. -X. Liu, Black hole solution and strong gravitational
lensing in Eddington-inspired Born-Infeld gravity, arXiv:1405.2178 [gr-qc].
[50] T. Delsate and J. Steinhoff, New insights on the matter-gravity coupling paradigm,
Phys. Rev. Lett. 109, 021101 (2012).
[51] P. Pani, V. Cardoso and T. Delsate, Compact stars in Eddington inspired gravity,
Phys. Rev. Lett. 107, 031101 (2011).
[52] P. Pani, T. Delsate and V. Cardoso, Eddington-inspired Born-Infeld gravity. Phenomenology
of non-linear gravity-matter coupling, Phys. Rev. D 85, 084020 (2012).
[53] J. Casanellas, P. Pani, I. Lopes and V. Cardoso, Testing alternative theories of gravity
using the Sun, Astrophys. J. 745, 15 (2012).
[54] P. P. Avelino, Eddington-inspired Born-Infeld gravity: astrophysical and cosmological
constraints, Phys. Rev. D 85, 104053 (2012).
[55] P. P. Avelino, Eddington-inspired Born-Infeld gravity: nuclear physics constraints
and the validity of the continuous fluid approximation, JCAP 1211, 022 (2012).
[56] T. Harko, F. S. N. Lobo, M. K. Mak and S. V. Sushkov, Structure of neutron, quark
and exotic stars in Eddington-inspired Born-Infeld gravity, Phys. Rev. D 88, 044032
(2013).
[57] T. Harko, F. S. N. Lobo, M. K. Mak and S. V. Sushkov, Wormhole geometries in
Eddington-inspired Born-Infeld gravity, arXiv:1307.1883 [gr-qc].
[58] Y. -H. Sham, L. -M. Lin and P. T. Leung, Testing universal relations of neutron stars
with a nonlinear matter-gravity coupling theory, Astrophys. J. 781, 66 (2014).
[59] H. K. Lau, P. T. Leung and L. M. Lin, Inferring physical parameters of compact stars
from their f-mode gravitational wave signals, Astrophys. J. 714, 1234 (2010).
[60] K. Yagi and N. Yunes, I-Love-Q, Science 341, 365 (2013).
[61] A. N. Makarenko, S. Odintsov and G. J. Olmo, Born-Infeld-f(R) gravity, arXiv:
1403.7409 [hep-th].
[62] A. N. Makarenko, S. D. Odintsov and G. J. Olmo, Little Rip, CDM and singular
dark energy cosmology from Born-Infeld-f(R) gravity, arXiv:1404.2850 [gr-qc].
[63] P. Pani and T. P. Sotiriou, Surface singularities in Eddington-inspired Born-Infeld
gravity, Phys. Rev. Lett. 109, 251102 (2012).
[64] J. Noller, J. H. C. Scargill and P. G. Ferreira. Interacting spin-2 fields in the Stuckelberg
picture, JCAP 1402, 007 (2014)
[65] A. Y. Kamenshchik, U. Moschella and V. Pasquier, An Alternative to quintessence,
Phys. Lett. B 511, 265 (2001).
[66] M. C. Bento, O. Bertolami and A. A. Sen, Generalized Chaplygin gas, accelerated
expansion and dark energy matter unification, Phys. Rev. D 66, 043507 (2002).
[67] Y. Wang, D. Wands, L. Xu, J. De-Santiago and A. Hojjati, Cosmological constraints
on a decomposed Chaplygin gas, Phys. Rev. D 87, 083503 (2013).
[68] M. Bouhmadi-Lopez and J. A. Jimenez Madrid, Escaping the big rip?, JCAP 0505,
005 (2005).
[69] M. Bouhmadi-Lopez, P. Frazao and A. B. Henriques, Stochastic gravitational waves
from a new type of modified Chaplygin gas, Phys. Rev. D 81, 063504 (2010).
[70] M. Bouhmadi-Lopez, P. Chen and Y. -W. Liu, Cosmological Imprints of a Generalized
Chaplygin Gas Model for the Early Universe, Phys. Rev. D 84, 023505 (2011).
[71] M. Bouhmadi-Lopez, P. Chen, Y. -C. Huang and Y. -H. Lin, Slow-Roll Inflation Preceded
by a Topological Defect Phase a la Chaplygin Gas, Phys. Rev. D 87, 103513
(2013).
[72] S. Nesseris and L. Perivolaropoulos, The Fate of bound systems in phantom and
quintessence cosmologies, Phys. Rev. D 70, 123529 (2004).
[73] V. Faraoni and A. Jacques, Cosmological expansion and local physics, Phys. Rev. D
76, 063510 (2007).
[74] L. Fernandez-Jambrina and R. Lazkoz, Geodesic behaviour of sudden future singularities,
Phys. Rev. D 70, 121503 (2004).
[75] L. Fernandez-Jambrina and R. Lazkoz, Classification of cosmological milestones,
Phys. Rev. D 74, 064030 (2006).
[76] S. Capozziello, V. F. Cardone and V. Salzano, Cosmography of f(R) gravity, Phys.
Rev. D 78, 063504 (2008).
[77] S. Capozziello and V. Salzano, Cosmography and large scale structure by f(R) gravity:
new results, Adv. Astron. 2009, 217420 (2009).
[78] M. Bouhmadi-Lopez, S. Capozziello and V. F. Cardone, Cosmography of f(R) - brane
cosmology, Phys. Rev. D 82, 103526 (2010).
[79] S. Capozziello, R. Lazkoz and V. Salzano, Comprehensive cosmographic analysis
by Markov Chain Method, Phys. Rev. D 84, 124061 (2011).
[80] A. Aviles, C. Gruber, O. Luongo and H. Quevedo, Cosmography and constraints on
the equation of state of the Universe in various parametrizations, Phys. Rev. D 86,
123516 (2012)
[81] C. Gruber and O. Luongo, Cosmographic analysis of the equation of state of the
universe through Pade approximations, Phys. Rev. D 89, 103506 (2014).
[82] V. Vitagliano, J. -Q. Xia, S. Liberati and M. Viel, High-Redshift Cosmography, JCAP
1003, 005 (2010).
[83] J. -Q. Xia, V. Vitagliano, S. Liberati and M. Viel, Cosmography beyond standard
candles and rulers, Phys. Rev. D 85, 043520 (2012).
[84] R. Lazkoz, J. Alcaniz, C. Escamilla-Rivera, V. Salzano and I. Sendra, BAO cosmography,
JCAP 1312, 005 (2013).
[85] M. -H. Belkacemi, M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, The holographic
induced gravity model with a Ricci dark energy: smoothing the little rip
and big rip through Gauss-Bonnet effects?, Phys. Rev. D 85, 083503 (2012).
[86] M. Bouhmadi-Lopez, P. Chen and Y. -W. Liu, Tradeoff between Smoother and
Sooner ”Little Rip”, Eur. Phys. J. C , 73: 2546 (2013).
[87] Abramowitz M and Stegun I. A, Handbook of Mathematica Functions, (New York:
Dover Publications, 1972).
[88] S. Dodelson, Modern Cosmology, (Academic Press, 2003).
[89] T. P. Sotiriou, Modified Actions for Gravity: Theory and Phenomenology, arXiv:
0710.4438 [gr-qc].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57748-
dc.description.abstract建立在Palatini方法上的Eddington-inspired-Born-Infeld 理論(EiBI)的一項重要特徵是它在真空中與愛因斯坦的廣義相對論相同,但是一旦有物質的存在,這個理論就會不同於廣義相對論。對於一個狀態方程是一個正值常數的物質而言,這個理論可以藉由一個反彈(bounce)或者迴盪效應(loitering effect)來消除大霹靂奇異點(Big Bang singularity)。我們發現在EiBI理論中,一個大撕裂(Big Rip)奇異點的消除是不可能的。但是當我們考慮其他奇異點的時候,就會得到不同的結果。確實,我們藉由EiBI理論試圖去避免/減緩其他對應到物理度規(physical metric)的暗能量奇異點。我們發現一個在廣義相對論中會出現的大凍結(Big Freeze)奇異點在EiBI理論中,會在某些情況下被減緩成一個突發(Sudden)或一個第四類(Type IV)奇異點。類似地,一個在廣義相對論中會出現的突發奇異點在EiBI理論中,會在某些參數範圍內被替代成一個第四類奇異點。並且,一個廣義相對論中的第四類奇異點也可以在某些情況下被替代成一個迴盪效應。再者,我們發現對於和物理聯絡(connection)相關的輔助度規(auxiliary metric)而言,它的奇異點效應會比物理度規還要平緩許多。另外,我們也展示了一個受縛系統的結構在接近大撕裂或小撕裂(Little Rip)之前會被破壞,但是在靠近突發、大凍結和第四類奇異點的時候則會維持受縛的狀態,這個結果和物理度規與輔助度規的選擇無關。接著,我們利用宇宙論方法--一個眾所皆知在給定的弗里德曼-勒梅特-羅伯遜-沃爾克度規(Friedmann-Lema^itre-Robertson-Walker metric)是模型獨立的方法--來制約這個模型。結果顯示,在眾多不同被這個理論預測的過去奇異點或者宇宙的起始之中,宇宙論分析偏向一個過去第四類奇異點或迴盪效應會發生的物理範圍。但是若要在這個理論預測的未來奇異點或宇宙末日之中決定確切的宇宙末日,我們需要對於更高階的宇宙論參數的觀測制約。除此之外我們還估計了這些過去和未來奇異點會發生的時間。
這篇論文是建立[1,2]這兩篇工作上。其中[1]已經被發表,而[2]也將在近期投稿發表。
zh_TW
dc.description.abstractThe Eddington-inspired-Born-Infeld scenario (EiBI) extit{`{a} la} Palatini approach is characterised by being equivalent to Einstein theory in vacuum but differing from it in the presence of matter. This theory prevents the Big Bang singularity either through a bounce or a loitering effect for a matter content whose equation of state is constant and positive. We show the impossibility of smoothing a big rip on the EiBI setup. The story is quite different for other singularities. Indeed, we invoke the EiBI scenario as a mean to avoid/smooth other dark energy related singularities with respect to the physical metric. We show that a big freeze singularity in general relativity (GR) can be smoothed in the EiBI scenario in some cases, where the singularity is substituted by a sudden or a type IV singularity. Similarly, a sudden singularity in GR can be replaced in some regions of the parameter space by a type IV singularity in the EiBI framework. And a type IV singularity can be replaced in some cases by a loitering behaviour. Furthermore, we also find that the auxiliary metric related to the physical connection usually has a smoother behaviour than the physical metric. In addition, we show that bound structures close to a big rip or little rip will be destroyed before the advent of the singularity and will remain bound close to a sudden, big freeze or type IV singularity. This result is independent of the choice of the physical or auxiliary metric. Subsequently, we constrain the model following a cosmographic approach which is well known to be theoretically model independent for a given Friedmann-Lema^itre-Robertson-Walker geometry. It turns out that among the various past singularities or beginning predicted by the theory, the cosmographic analyses pick up the physical region which determines the occurrence of a type IV singularity or a loitering effect in the past. While among the various future singularities or doomsday predicted, the use of observational constraints on higher order cosmographic parameters is necessary to predict which doomsday is more probable. We estimate as well when those singularities would happen in the future or in the past.
The thesis is based on the works [1,2]. [1] is already published and [2] is about to be submitted for publication.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:01:23Z (GMT). No. of bitstreams: 1
ntu-103-R01244001-1.pdf: 1148494 bytes, checksum: 74bfc982db2c168e3c2ba84d03bbc330 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Background of the EiBI Theory and the Dark Energy Related Singularity 9
2.1 The Field Equation in the EiBI Theory 9
2.1.1 The Derivation of the Field Equation 9
2.1.2 Considering a FLRW Line Element and the Background 12
2.2 The Phantom Generalised Chaplygin Gas 16
Chapter 3 The EiBI Model and Dark Energy Related Singularities 19
3.1 The EiBI Scenario and the Big Rip 19
3.1.1 The Physical Metric g_munu 19
3.1.2 The Auxiliary Metric q_munu 20
3.2 The EiBI Scenario and the Sudden Singularity 20
3.2.1 The Physical Metric g_munu 20
3.2.2 The Auxiliary Metric q_munu 23
3.3 The EiBI Scenario and the Big Freeze 24
3.3.1 The Physical Metric g_munu 24
3.3.2 The Auxiliary Metric q_munu 26
3.4 The EiBI Scenario and the Type IV Singularity 27
3.4.1 The Physical Metric g_munu 27
3.4.2 The Auxiliary Metric q_munu 30
3.5 The EiBI Scenario and the Little Rip 32
3.5.1 The Physical Metric g_munu 32
3.5.2 The Auxiliary Metric q_munu 34
Chapter 4 The Geodesic Analyses of a Newtonian Object in the EiBI Setup 36
4.1 Dark Energy with a Constant Equation of State 38
4.2 Phantom-GCG with alpha > 2 39
4.3 Phantom-GCG with −3 < alpha < −1 40
4.4 Dark Energy Driving the Little Rip Event 41
4.5 The Type IV Singularity and the Geodesic Defined by the Auxiliary Metric 42
Chapter 5 A Cosmographic Approach of the EiBI Scenario 44
5.1 The First Method: Introducing Y 49
5.1.1 The Analyses for Positive Y in the EiBI Theory 50
5.1.2 The Analyses for Negative Y in the EiBI Theory 51
5.2 The Second Approach: Assuming Ωm 53
Chapter 6 Conclusions 62
Appendix A Brief Introduction of the Palatini Formalism 64
Appendix B The Inclusion of Matter and Radiation in GR with a pGCG Fluid 67
Appendix C A Universe Filled with a Plain GCG in the EiBI Theory 70
Bibliography 74
dc.language.isoen
dc.subject未來奇異點zh_TW
dc.subject黑暗能量zh_TW
dc.subject晚期宇宙學zh_TW
dc.subject修正重力理論zh_TW
dc.subject宇宙論方法zh_TW
dc.subjectmodified gravityen
dc.subjectlate-time cosmologyen
dc.subjectdark energyen
dc.subjectfuture singularitiesen
dc.subjectcosmographic approachen
dc.titleEiBI宇宙理論:宇宙論方法、末日預言與受縛系統的命運zh_TW
dc.titleEddington-Born-Infeld cosmology: a cosmographic approach, a tale of doomsdays and the fate of bound structureen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor瑪麗安(Mariam Bouhmadi-Lopez)
dc.contributor.oralexamcommittee顧哲安
dc.subject.keyword修正重力理論,晚期宇宙學,黑暗能量,未來奇異點,宇宙論方法,zh_TW
dc.subject.keywordmodified gravity,late-time cosmology,dark energy,future singularities,cosmographic approach,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2014-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
Appears in Collections:天文物理研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
1.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved