請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57730完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Che-Hao Hsu | en |
| dc.contributor.author | 許哲豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:00:23Z | - |
| dc.date.available | 2019-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-16 | |
| dc.identifier.citation | 1. Moan, J. and Q. Peng, An outline of the hundred-year history of PDT. Anticancer Research, 2003. 23(5a): p. 3591-600.
2. Moskal, T.L., et al., Operation and photodynamic therapy for pleural mesothelioma: 6-year follow-up. Annals of Thoracic Surgery, 1998. 66(4): p. 1128-1133. 3. Duncan, R. and Y.N. Sat, Tumour targeting by enhanced permeability and retention (EPR) effect. Annals of Oncology, 1998. 9: p. 39-39. 4. Dougherty, T.J., et al., Photodynamic therapy. Journal of the National Cancer Institute, 1998. 90(12): p. 889-905. 5. Chen, J., et al., New technology for deep light distribution in tissue for phototherapy. Cancer Journal, 2002. 8(2): p. 154-63. 6. Almeida, R.D., et al., Intracellular signaling mechanisms in photodynamic therapy. Biochimica et Biophysica Acta, 2004. 1704(2): p. 59-86. 7. Lu, Y., et al., Methylene Blue-Mediated Photodynamic Therapy Induces Mitochondria-Dependent Apoptosis in HeLa Cell. Journal of Cellular Biochemistry, 2008. 105(6): p. 1451-1460. 8. Urruticoechea, A., et al., Recent advances in cancer therapy: an overview. Current Pharmaceutical Design, 2010. 16(1): p. 3-10. 9. Tardivo, J.P., et al., Treatment of melanoma lesions using methylene blue and RL50 light source. Photodiagnosis and photodynamic therapy, 2004. 1(4): p. 345-346. 10. van Hillegersberg, R., et al., Adjuvant intraoperative photodynamic therapy diminishes the rate of local recurrence in a rat mammary tumour model. British Journal of Cancer, 1995. 71(4): p. 733-7. 11. Allison, R.R., et al., Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 2004. 1(1): p. 27-42. 12. Dougherty, T.J., Photochemistry in the Treatment of Cancer, in Advances in Photochemistry. 2007, John Wiley & Sons, Inc. p. 275-311. 13. Tuite, E.M. and J.M. Kelly, New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. Journal of Photochemistry and Photobiology B: Biology, 1993. 21(2–3): p. 103-124. 14. Junqueira, H.C., et al., Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Physical Chemistry Chemical Physics, 2002. 4(11): p. 2320-2328. 15. Tardivo, J.P., et al., Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and photodynamic therapy, 2005. 2(3): p. 175-191. 16. Tuite, E.M. and J.M. Kelly, Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. Journal of Photochemistry and Photobiology B: Biology, 1993. 21(2-3): p. 103-24. 17. Gabrielli, D., et al., Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochemistry and Photobiology, 2004. 79(3): p. 227-32. 18. Severino, D., et al., Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochemistry and Photobiology, 2003. 77(5): p. 459-68. 19. Baptista, M.S. and G.L. Indig, Effect of BSA Binding on Photophysical and Photochemical Properties of Triarylmethane Dyes. The Journal of Physical Chemistry B, 1998. 102(23): p. 4678-4688. 20. Ochsner, M., Light scattering of human skin: a comparison between zinc (II)-phthalocyanine and photofrin II. Journal of Photochemistry and Photobiology B: Biology, 1996. 32(1-2): p. 3-9. 21. Kanduc, D., et al., Cell death: apoptosis versus necrosis (review). International Journal of Oncology, 2002. 21(1): p. 165-70. 22. Yoo, D., et al., Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angewandte Chemie International Edition in English, 2012. 51(50): p. 12482-5. 23. Adams, R.M., Medicolegal aspects of occupational skin diseases. Dermatologic clinics, 1988. 6(1): p. 121-9. 24. Hail, N., Jr., et al., Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis : an international journal on programmed cell death, 2006. 11(6): p. 889-904. 25. Zhang, L.Z. and G.Q. Tang, The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study. Journal of Photochemistry and Photobiology B: Biology, 2004. 74(2-3): p. 119-25. 26. Yao, J. and G.J. Zhang, Loss of lysosomal integrity caused by the decrease of proton translocation in methylene blue-mediated photosensitization. Biochimica et Biophysica Acta, 1996. 1284(1): p. 35-40. 27. Kim, D. and S. Jon, Gold nanoparticles in image-guided cancer therapy. Inorganica Chimica Acta, 2012. 393(0): p. 154-164. 28. Jiang, W., et al., Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 2008. 3(3): p. 145-50. 29. El-Sayed, I.H., X. Huang, and M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters, 2005. 5(5): p. 829-34. 30. Asati, A., et al., Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. American Chemical Society Nano, 2010. 4(9): p. 5321-31. 31. Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development, 2003. 17(5): p. 545-80. 32. Raemdonck, K., et al., Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chemical Society Reviews, 2014. 43(1): p. 444-472. 33. Maeda, H., Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release, 2012. 164(2): p. 138-44. 34. Vasey, P.A., et al., Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clinical Cancer Research, 1999. 5(1): p. 83-94. 35. Alonso, M.J., Nanomedicines for overcoming biological barriers. Biomedicine & Pharmacotherapy, 2004. 58(3): p. 168-72. 36. Kanazawa, T., et al., Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal. International Journal of Pharmaceutics, 2009. 379(1): p. 187-95. 37. Jaiswal, J.K., et al., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 2003. 21(1): p. 47-51. 38. Lewin, M., et al., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 2000. 18(4): p. 410-4. 39. Josephson, L., et al., High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry, 1999. 10(2): p. 186-91. 40. Lee, J.S. and C.H. Tung, Enhancing the Cellular Delivery of Nanoparticles using Lipo-Oligoarginine Peptides. Advanced Functional Materials, 2012. 22(23): p. 4924-4930. 41. Wang, C., et al., Synthesis, Assembly, and Biofunctionalization of Silica-Coated Gold Nanorods for Colorimetric Biosensing. Advanced Functional Materials, 2006. 16(13): p. 1673-1678. 42. Kojic, N., et al., Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Advanced Functional Materials, 2012. 22(18): p. 3793-3798. 43. Shihab, M.S., AM1 Semi-Empirical Calculation to Study the Nature of Di- and Tri-molecular Assembly of Pi,Pi-Aromatic Interactions. Arabian Journal for Science and Engineering, 2010. 35(2A): p. 95-113. 44. Dale, R.E., Fluorescence depolarization and orientation factors for excitation energy transfer between isolated donor and acceptor fluorophore pairs at fixed intermolecular separations. Acta Physica Polonica A, 1978. 54(6): p. 743-756. 45. El-Sayed, I.H., X. Huang, and M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 2006. 239(1): p. 129-35. 46. Hirsch, L.R., et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13549-54. 47. Chithrani, B.D. and W.C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 2007. 7(6): p. 1542-50. 48. Crichton, R.R. and M. Charloteaux-Wauters, Iron transport and storage. European Journal of Biochemistry, 1987. 164(3): p. 485-506. 49. Aisen, P., A. Leibman, and J. Zweier, Stoichiometric and site characteristics of the binding of iron to human transferrin. Journal of Biological Chemistry, 1978. 253(6): p. 1930-1937. 50. Rouault, T.A. and W.H. Tong, Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nature Reviews Molecular Cell Biology, 2005. 6(4): p. 345-51. 51. Singh, M., Transferrin As A targeting ligand for liposomes and anticancer drugs .Current Pharmaceutical Design, 1999. 5(6): p. 443-51. 52. Bellocq, N.C., et al., Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjugate Chemistry, 2003. 14(6): p. 1122-32. 53. Tsuji, T., H. Yoshitomi, and J. Usukura, Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy (Oxford, England), 2013. 62(3): p. 341-52. 54. Parab, H.J., et al., Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake. Nanotechnology, 2011. 22(39): p. 395706. 55. Song, Y., et al., Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chemical Communications, 2011. 47(15): p. 4436-4438. 56. Zhao, T., et al., Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir, 2010. 26(18): p. 14937-42. 57. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983. 65(1-2): p. 55-63. 58. Gerlier, D. and N. Thomasset, Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 1986. 94(1-2): p. 57-63. 59. Li, J.L., et al., In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 2009. 274(2): p. 319-26. 60. Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 1985. 150(1): p. 76-85. 61. Wiechelman, K.J., R.D. Braun, and J.D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical Biochemistry, 1988. 175(1): p. 231-7. 62. Krohn, R.I., The colorimetric detection and quantitation of total protein. Current Protocols in Toxicology, 2005. Appendix 3: p. A.3i.1-28. 63. Todaro, G.J. and H. Green, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of cell biology, 1963. 17: p. 299-313. 64. Rahbari, R., et al., A novel L1 retrotransposon marker for HeLa cell line identification. Biotechniques, 2009. 46(4): p. 277-84. 65. Rungsiyanont, S., et al., Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: Biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells. Journal of Biomaterials Applications, 2012. 27(1): p. 47-54. 66. Curtin, J.F., M. Donovan, and T.G. Cotter, Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 2002. 265(1-2): p. 49-72. 67. Shi, J., et al., PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013. 34(37): p. 9666-77. 68. Shrivastava, R., B. Jain, and K. Das, Spectroscopic investigations on the binding of Methylene Blue and Nile Blue to negatively charged gold nanorods. Journal of Molecular Structure, 2012. 1020: p. 56-62. 69. Dickinson, B.C. and C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology, 2011. 7(8): p. 504-11. 70. Irani, K., et al., Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science, 1997. 275(5306): p. 1649-52. 71. Takahashi, A., et al., Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nature Cell Biology, 2006. 8(11): p. 1291-7. 72. Ramsey, M.R. and N.E. Sharpless, ROS as a tumour suppressor? Nature Cell Biology, 2006. 8(11): p. 1213-1215. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57730 | - |
| dc.description.abstract | 光動力治療主要是經由讓目標細胞將光敏劑攝入後,以特定波長之雷射光激發產生自由基來達到殺死目標細胞之效果。光動力治療通常會遭遇到兩個問題:光敏劑的暗毒性以及光敏劑在目標細胞與正常體細胞之間的低選擇性。本研究中選擇海拉細胞(Hela cell)來做為光動力治療之目標細胞,光敏劑則選用亞甲基藍。為降低亞甲基藍之暗毒性,本研究中將亞甲基藍與經由水熱反應合成之奈米金粒子藉由亞甲基藍與奈米金粒子表面poly styrene-alt-maleic acid (PSMA) 高分子層之分子間作用力來做結合以獲得一具有光敏劑性質的奈米複合物。
本研究中中利用UV-visible光譜儀、電子穿隧式顯微鏡、X光散射儀與界面電位分析儀來分析亞甲基藍-金奈米複合物之物理及光學性質,此外還應用9, 10-Anthracenediyl-bis(methylene) dimalonic acid (ABDA)來檢測此複合物在波長660奈米雷射激發下產生自由基之能力。結果顯示亞甲基藍-金奈米複合物可以成功被合成而且亞甲基藍的光學性質與產生自由基之能力在與奈米金粒子結合後依然被保留。本研究接著選用海拉細胞(Hela cell)來做複合物之毒性測試,在與奈米金粒子接合後,亞甲基藍的暗毒性有效地被降低,並且在功率100 mW波長660奈米雷射照射4分鐘之下可以保有與純亞甲基藍相近之光動力治療效率。另外,為了提升複合物的癌細胞標靶能力,本研究中將運鐵蛋白藉由EDC/NHS反應與複合物接合以提升複合物在目標細胞(海拉細胞)與非癌正常細胞(3T3纖維母細胞)之間的選擇性,之後使用原子吸收光譜儀來做細胞內複合物胞吞量之定量。此外,本研究中還使用2′, 7′-Dichlorofluorescin diacetate (DCFH-DA)與螢光顯微鏡來偵測細胞內部之自由基產生。結果顯示運鐵蛋白可以有效提升癌細胞標靶能力,並且在細胞實驗中證實可以顯著提升光動力治療效果。最後,藉由Annexin V-FITC/PI螢光染色分析,我們發現大多數細胞是死於細胞凋亡。 本研究成功合成一能搭載光敏劑且同時具備高生物相容性和癌細胞標靶能力之多功能奈米複合物。我們希望能應用此複合物在施行癌症之光動力治療上,以期能有效減少治療之副作用,並且能夠以更少劑量去達到更大的治療效果。 | zh_TW |
| dc.description.abstract | Photodynamic therapy (PDT) mainly involves cellular uptake of photosensitizer (PS) and excitation of light at specific wavelength to induce generation of reactive oxygen species (ROS) inside the targeted cells. This approach usually suffers from two main deficiencies: dark toxicity of PS and poor selectivity of cellular uptake between targeted cells and normal tissues.
In this work, a known effective PS, methylene blue (MB) which can be excited by 660 nm red light source was chosen. Hela cells were used as targeted cells for PDT. To address obstacles in PDT, the MB conjugated Au nanocomposites were prepared via a hydrothermal synthesis method following by an intermolecular interaction between a poly styrene-alt-maleic acid (PSMA) layer on the Au nanoparticles (AuNPs) and MB. The structure and optical property of MB-AuNP conjugate were characterized by UV-visible spectrometer, transmission electron microscopy (TEM), X-ray diffraction pattern, and zeta-potential analysis. Furthermore, generation of ROS from MB-AuNP conjugate after excitation of 100 mW hand-held laser at 660 nm wavelength was detected by using 9, 10-Anthracenediyl-bis(methylene) dimalonic acid (ABDA). Results indicated that the MB-AuNP conjugate was successfully prepared by wet-chemistry reaction since the optical property of MB was remained after conjugation. Then toxic effect of MB-AuNP conjugate on Hela cell was examined. With a single 4 min hand-held 100 mW laser treatment, cell works proved that AuNPs as goodness carrier could effectively reduce the cell toxicity of MB and still remain the PDT efficiency. Moreover, transferrin (Tf) was grafted on the particles via EDC/NHS reaction and followed by MB attachment as Tf-MB-AuNP conjugate to enhance the selectivity of cellular uptake between cancer cells (Hela cell) and non-malignant cells (3T3 cell, fibroblast). Atomic absorption spectroscopy (AA) was used for cellular uptake quantification. In vitro ROS generation was also monitored by 2′, 7′-Dichlorofluorescin diacetate (DCFH-DA). It was shown that Tf could effectively promote cancer cell targeting. In addition, Tf-MB-AuNP was proved that could enhance PDT efficiency significantly in cell works. Finally, cell death pathway was found to be mainly apoptosis by Annexin V-FITC/PI staining. We proposed that by applying this biocompatible and cancer cell targeting Tf-MB-AuNP conjugate for PDT treatment could simultaneously reduce dark toxicity of MB and enhance the photodynamic therapy efficiency. This multi-functional AuNP could provide a less harmful alternative for PDT in cancer treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:00:23Z (GMT). No. of bitstreams: 1 ntu-103-R01524029-1.pdf: 4902537 bytes, checksum: 0b6cae116b3d545e6b4f917a4d0745b6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x Chapter 1 Introduction 1 1.1 Photodynamic Therapy 1 1.2 Design of Multi-functional Nanoparticle 3 1.2.1 Methylene Blue 4 1.2.2 Gold Nanoparticle 8 1.2.3 Transferrin 11 1.3 Research Framework 13 Chapter 2 Material and Methods 15 2.1 Materials 15 2.2 Equipment 16 2.3 Solution formula 18 2.3.1 Phosphate Buffered Saline Solution (PBS), pH 7.4 18 2.3.2 DMEM-HG Culture Medium 18 2.3.3 MTT Assay Working Solution 19 2.3.4 MES Buffer Solution, pH 5.5 19 2.3.5 BCA Assay Working Solution 19 2.3.6 DCFH-DA Stock Solution 19 2.4 Methods 20 2.4.1 Cell culture (Hela cell, 3T3 fibroblast) 20 2.4.2 AuNP 20 2.4.2.1 Sythesis of AuNP 20 2.4.2.2 Characteriztion 21 2.4.3 MB-AuNP conjugate 21 2.4.3.1 Preparation of MB-AuNP conjugate 21 2.4.3.2 Optical property examination 21 2.4.3.3 Stability test 22 2.4.3.4 ROS generation test – ABDA method 22 2.4.3.5 In vitro cell toxicity test – MTT assay 23 2.4.4 Tf-AuNP conjugate 24 2.4.4.1 Surface modification – EDC/NHS reaction 24 2.4.4.2 Cellular uptake quantification 26 2.4.5 Tf-MB-AuNP conjugate 27 2.4.5.1 Preparation of Tf-MB-AuNP conjugate 27 2.4.5.2 ROS generation monitoring – DCFH-DA staining 27 2.4.5.3 Cancer cell targeting effect on PDT – MTT assay 29 2.4.6 Cell death pathway 29 2.4.6.1 Annexin V-FITC/PI staining 29 2.5 Statistical Analysis 31 Chapter 3 Results and discussion 40 3.1 Characterization of AuNP 40 3.2 MB-AuNP conjugate 40 3.2.1 Optical property of MB-AuNP conjugate 40 3.2.2 Stability test on MB-AuNP conjugate 41 3.2.3 ROS generation test – ABDA method 42 3.2.4 In vitro cell toxicity test – MTT assay 42 3.3 Tf-AuNP conjugate 43 3.3.1 Surface modification – EDC/NHS reaction 43 3.3.2 Cellular uptake quantification 43 3.4 Tf-MB-AuNP conjugate 44 3.4.1 Optical property of Tf-MB-AuNP conjugate 44 3.4.2 ROS generation monitoring – DCFH-DA staining 45 3.4.3 Cancer cell targeting effect on PDT – MTT assay 46 3.5 Cell death pathway 46 3.5.1 Annexin V-FITC/PI staining 46 CONCLUSION 58 FUTURE PROSPECTIVES 60 APPENDIX 62 REFERENCE 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 亞甲基藍 | zh_TW |
| dc.subject | 運鐵蛋白 | zh_TW |
| dc.subject | 自由基 | zh_TW |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 光動力治療 | zh_TW |
| dc.subject | gold nanoparticles | en |
| dc.subject | reactive oxygen species | en |
| dc.subject | methylene blue | en |
| dc.subject | transferrin | en |
| dc.subject | photodynamic therapy | en |
| dc.title | 亞甲基藍-金奈米複合物於光動力治療之應用 | zh_TW |
| dc.title | Gold Nanoparticles Conjugated with Methylene Blue for Photodynamic Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃志嘉(Chih-Chia Huang) | |
| dc.contributor.oralexamcommittee | 吳嘉文(Chia-Wen Wu),劉子銘(Tzu-Ming Liu) | |
| dc.subject.keyword | 金奈米粒子,自由基,亞甲基藍,運鐵蛋白,光動力治療, | zh_TW |
| dc.subject.keyword | gold nanoparticles,reactive oxygen species,methylene blue,transferrin,photodynamic therapy, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
