請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57701完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晏州(Yann-Jou Lin) | |
| dc.contributor.author | Chih-Chieh Wang | en |
| dc.contributor.author | 王稚絜 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:58:49Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-17 | |
| dc.identifier.citation | 1. 王珮琪、林晏州,(1998),景觀規劃中色彩計畫流程之探討,造園學報,5(2),1-19。
2. 吳仕傑、李哲源、李素馨、雷祖強,(2010),結合眼球追蹤與影像紋理技術於景觀視覺偏好萃取,第七屆數位地球國際研討會論文集,(pp.575-588),台北:中國文化大學數位地球研究中心。 3. 李素馨、何英齊,(2000),應用瞳位追蹤方法建立景觀偏好模式之研究,造園學報,6(1/2),71-89。 4. 李素馨、陳育文,(2006),駕車者對廣告招牌與植栽形式之視覺認知與偏好研究,戶外遊憩研究,19(3),45-67。 5. 林晏州,(2001),行道樹景觀美質之評估,造園學報,7(2),71-97。 6. 林晏州、陳傳興,(1996),民眾對自然環境中人為結構物之視覺偏好研究,造園學報,3(1),45-61。 7. 林昆範,(2005),色彩原論,台北:全華圖書股份有限公司。 8. 林崇宏,(1995),造型基礎,台北:藝風堂出版社。 9. 侯錦雄,(1984),利用攝影媒體表達景觀空間之研究,中國園藝,30(2), 135-147。 10. 唐大崙、李天任、蔡政旻,(2005),喜好與視線軌跡關係初探─ 以色彩喜好排序作業為例,中華心理學刊,47(4),339-351。 11. 莊明振、葉青林,(1998),色彩差異因素對物體色色彩調和的影響,設計學報,3(2),113-130。 12. 陳飛虎,(2007),建築色彩學,中國建築工業出版社。 13. 陳學志、賴惠德、邱發忠,(2010),眼球追蹤技術在學習與教育上的應用,教育科學研究期刊,55(4),39-68。 14. 陳鴻興、陳詩涵,(2007),色彩工程學理論與應用,台北:全華圖書股份有限公司。 15. 陳傳興、林晏州,(1995),風景區中建築物造型與色彩對視覺改變明顯程度之影響,台大農學院報告,35(1),45-61。 16. 傅朝卿,(2013),台灣建築的式樣脈絡,台北:五南圖書出版股分有限公司。 17. 曾國源、林晏州,(1996),電塔的視覺衝擊評估--觀賞距離及景觀類型的影響分析,台大農學院研究報告,36(3),180-194。 18. 黃書倩,(2003),色彩學的基礎,台北:六合出版社。 19. 黃嘉健、李素馨、Linda Andy,(2008),水體景觀類型對視覺生理及心理反應之關係,第10 屆休閒、遊憩、觀光學術研討會暨國際論壇,台中:中華民國戶外遊憩學會。 20. 管倖生、童鼎鈞,(2009),CIELAB, CMC, BFD, CIE94 色差公式之績效評估-以 ABS 塑膠材料為例,設計學報,7(2),23-46。 21. 歐秀明、賴來洋,(1984),實用色彩學,台北:雄獅圖書股份有限公司。 22. 歐聖榮,(2002),高速公路兩側廣告招牌對用路者環境知覺之影響,中國園藝,48(2),167-182。 23. 蔡介立、顏妙璇、汪勁安,(2005),眼球移動測量及在中文閱讀研究之應用,應用心理研究,(28),91-104。 24. 鄭佳昆,林晏州,(1996),以相片評估造園鋪面材料之可行性研究,台大農學院研究報告,36(1),1-15。 25. 戴孟宗,(2011),現代色彩學,台北:全華圖書股份有限公司。 26. 魏顯權、林晏州,(1995),大型人為設施物對風景區視覺景觀品質之影響,台大農學院研究報告,35(3),302-316。 27. 蘇玲玉,(2012),地方依附對視覺景觀衝擊之影響-以景觀偏好及環境敏感度為例,碩士論文,國立臺灣大學生物資源暨農學院園藝暨景觀學所,台北。 28. Anderson, L., Mosier, J., & Chandler, G. (1979). Visual absorption capability. Proceedings of Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource. USDA, Forest Service, General Technical Report PSW-35. 164-171. 29. Arriaza, M., Canas-Ortega, J. F., Canas-Madueno, J. A., & Ruiz-Aviles, P. (2004). Assessing the visual quality of rural landscapes. Landscape and Urban Planning, 69(1), 115-125. 30. Berto, R., Massaccesi, S., & Pasini, M. (2008). Do eye movements measured across high and low fascination photographs differ? Addressing Kaplan's fascination hypothesis. Journal of Environmental Psychology, 28(2), 185-191. 31. Bishop, I. D., & Leahy, P. N. A. (1989). Assessing the visual impact of development proposals: The validity of computer simulations. Landscape Journal, 8(2), 92-100. 32. Bishop, I. D. (1997). Testing perceived landscape colour difference using the Internet. Landscape and Urban Planning, 37(3), 187-196. 33. Bishop, I. D. (2002). Determination of thresholds of visual impact: The case of wind turbines. Environment and Planning B: Planning and Design, 29(5), 707-718. 34. Bishop, I. D. (2003). Assessment of visual qualities, impacts, and behaviours, in the landscape, by using measures of visibility. Environment and Planning B: Planning and Design, 30, 677-688. 35. Bishop, I. D., Lange, E., & Mahbubul, A. M. (2004). Estimation of the influence of view components on high-rise apartment pricing using a public survey and GIS modeling. Environment and Planning B: Planning and Design, 31, 439-452. 36. Bishop, I. D., & Miller, D. R. (2007). Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables. Renewable Energy, 32(5), 814-831. 37. Canas, I., Ayuga, E., & Ayuga, F. (2009). A contribution to the assessment of scenic quality of landscapes based on preferences expressed by the public. Land Use Palicy, 26(4), 1173-1181. 38. Chuang, M. C., & Ou, L. C. (2001). Influence of a holistic color interval on color harmony. Color Research & Application, 26(1), 29-39. 39. Corry, R. C. (2011). A case study on visual impact assessment for wind energy development. Impact Assessment and Project Appraisal, 29(4), 303-315. 40. De Lucio, J. V., Mohamadian, M., Ruiz, J. P., Banayas, J., & Bernaldez, F. G. (1996). Visual landscape exploration as revealed by eye movement tracking. Landscape and Urban Planning, 34(2), 135-142. 41. Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455-470. 42. Dupont, L., Antrop, M., & Eetvelde, V. V. (2013). Eye-tracking analysis in landscape perception research: Influence of photograph properties and landscape characteristics. Landscape Research, (ahead-of-print), 1-16. 43. Feimer, N. R., Craik, K. H., Smardon, R. C., & Sheppard, S. R. (1979). Appraising the reliability of visual impact assessment methods. Proceedings of Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource. USDA, Forest Service, General Technical Report PSW-35. 286-295. 44. Feimer, N. R., Smardon, R. C., & Craik, K. H. (1981). Evaluating the effectiveness of observer based visual resource and impact assessment methods. Landscape Research, 6(1), 12-16 45. Garcı́a, L., Hernandez, J., & Ayuga, F. (2003). Analysis of the exterior colour of agroindustrial buildings: A computer aided approach to landscape integration. Journal of Environmental Management, 69(1), 93-104. 46. Gray, B. A., Ady, J., & Jones, G. R. (1979). Evolution of a visual impact model to evaluate nuclear plant siting and design option. Proceedings of Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource. USDA, Forest Service, General Technical Report PSW-35. 491-498. 47. Hernandez, J., Garcia, L., & Ayuga, F. (2004). Assessment of the visual impact made on the landscape by new buildings: A methodology for site selection. Landscape and Urban Planning, 68 (1), 15-28. 48. Hill, B., Roger, T., & Vorhagen, F. W. (1997). Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Transactions on Graphics, 16(2), 109-154. 49. Hull, R. B., & Revell G. R.B. (1989). Issues in sampling landscapes for visual quality assessments. Landscape and Urban Planning, 17 (4), 323–330. 50. Iverson, W. D. (1985). And that's about the size of it: Visual magnitude as a measurement of the physical landscape. Landscape Journal, 4(1), 14-22. 51. Jacob, R. J. K., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pp573-605, Oxford:Elsevier Science. 52. Mann, R. (1979). A technique for the assessment of visual impact of nearshore confined dredged materials and other built islands. Proceedings of Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource. USDA, Forest Service, General Technical Report PSW-35. 654-659. 53. Magill, A. W., & Litton, R. B. (1986). A color measuring system for landscape assessment. Landscape Journal, 5(1), 45-54. 54. Molnarova, K., Sklenicka, P., Stiborek, J., Svobodova, K., Salek, M., & Brabec, E. (2012). Visual preferences for wind turbines: Location, numbers and respondent characteristics. Applied Energy, 92, 269-278. 55. Morgan, R. (1999). Some factors affecting coastal landscape aesthetic quality assessment. Landscape Research, 24(2), 167-184. 56. Moon, P., & Spencer, D. E. (1944). Geometric formulation of classical color harmony. Journal of the Optical Society of America, 34(1), 46-50. 57. Nordh, H., Hagerhall, C. M., & Holmqvist, K. (2013). Tracking restorative components: Patterns in eye movements as a consequence of a restorative rating task. Landscape Research, 38(1), 101-116. 58. O'Connor, Z. (2006). Bridging the gap: Facade colour, aesthetic response and planning policy. Journal of Urban Design, 11(3), 335-345. 59. O'Connor, Z. (2011). Facade colour and judgements about building size and congruity. Journal of Urban Design, 16(03), 397-404. 60. Ou, L. C., & Luo, M. R. (2006). A colour harmony model for two‐colour combinations. Color Research & Application, 31(3), 191-204. 61. Potocka, I. (2013). The lakescape in the eyes of a tourist. Quaestiones Geographicae, 32(3), 85-97. 62. Sander, H. A., & Manson, S. M. (2007). Heights and locations of artificial structures in viewshed calculation: How close is close enough?. Landscape and urban planning, 82(4), 257-270. 63. Schloss, K. B., Strauss, E. D., & Palmer, S. E. (2013). Object color preferences. Color Research and Application, 38(6), 383-411. 64. Schroeder, H. W. (1988). Visual impact of hillside development: Comparison of measurements derived from aerial and ground-level photographs. Landscape and Urban Planning, 15(1), 119-126. 65. Seve, R. (1991). New formula for the computation of CIE 1976 hue difference. Color Research & Application, 16(3), 217-218. 66. Seve, R. (1996). Practical formula for the computation of CIE 1976 hue difference. Color Research and Application, 21(4), 314-314. 67. Shang, H., & Bishop, I. D. (2000). Visual thresholds for detection, recognition and visual impact in landscape settings. Journal of Environmental Psychology, 20(2), 125-140. 68. Smardon, R. C., & Hunter, M. (1983). Procedures and methods for wetland and coastal area visual impact assessment (VIA). The future of wetlands: Assessing visualcultural values (pp.171-201), Allenheld-Osmun, Totowa, NJ. 69. Smardon, R. C., Palmer, J. F., & Felleman, J. P. (1986). Foundations For Visual Project Analysis, John Wiley & Sons, New York. 70. Smardon, R. C. (1988). Visual impact assessment for island and coastal environments. Impact Assessment, 6(1), 5-24. 71. Sheppard, S. R. J. (1989). Visual Simulation: A User's Guide for Architects, Engineers, and Planners. New York: Van Nastrand Reinhold. 72. Sheppard, S. R. (2005). Landscape visualisation and climate change: The potential for influencing perceptions and behaviour. Environmental Science & Policy, 8(6), 637-654. 73. Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77-107. 74. Tsoutsos, T., Tsouchlaraki, A., Tsiropoulos, M., & Serpetsidakis, M. (2009). Visual impact evaluation of a wind park in a Greek island. Applied Energy, 86(4), 546-553. 75. Tveit, M., Ode, A., & Fry, G. (2006). Key concepts in a framework for analysing visual landscape character. Landscape Research, 31(3), 229-255. 76. United States Department of Interior, Bureau of Land Management. (1986). Visual Resource Inventory. BLM Manual Handbook 8410-1. Washington, D.C. 77. United States Department of Interior, Bureau of Land Management. (1986). Visual Resource Contrast Rating. BLM Manual Handbook 8431-1, Washington, D.C. 78. United States Department of Agriculture, Forest Service. (1974). National forest landscape management, Volum2, Chapter1: The visual management system (Agriculture handbook Number 462). Washington D.C. 79. United States Department of Agriculture, Forest Service. (1995). Landscape aesthetics: A handbook for scenery management (Agriculture handbook Number 701), Washington, DC. 80. Unver, R., & Ozturk, L. D. (2002). An example of facade colour design of mass housing. Color Research & Application, 27(4), 291-299. 81. Vries, S., Groot, M., & Boers, J. (2012). Eyesores in sight: quantifying the impact of man-made elements on the scenic beauty of Dutch landscapes. Landscape and Urban Planning, 105(1), 118-127. 82. Wohlwill, J. F. (1978). What belongs where: Research on the fittingness of man‐made structures in natural settings. Landscape Research, 3(3), 3-5. 83. Yeomans, W. C. (1979). A proposed biophysical approach to visual absorption capability (VAC). In Proceedings of our national landscape: A conference on applied techniques for analysis and management of the visual resource, USDA, Forest Service, General Technical Report PSW-35. 172-181. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57701 | - |
| dc.description.abstract | 有鑑於人為開發對視覺景觀產生不可回復的影響,視覺衝擊評估日顯重要,評估過程中通常會考量物件本身的造型、尺寸、色彩以及物件的放置基地等因子對視覺的影響,然而於現實生活中,往往都是造型與尺寸已經確定,能夠修改的範圍有限,且設置的基地也礙於現況的限制,因此唯有透過物件與環境的色彩相配合,方能降低視覺衝擊的產生,故本研究旨在了解建築物的色彩對於視覺衝擊的影響,並進而比較建築物放置於不同位置對於視覺衝擊的影響是否有所差異。研究中將明顯程度作為視覺衝擊程度的量測指標,然而明顯與否並不代表受測者偏好與否,因此於研究中再詢問偏好程度。另外,本研究期望以更客觀的方式了解視覺衝擊,因此進一步運用瞳位追蹤儀與問卷方式進行測量比較,了解兩者之間是否有相關。本研究分為兩階段,第一階段以PHOTOSHOP模擬240張照片,並計算建築物與背景的色彩對比,根據文獻回顧結果計算完全色彩對比、明度對比、彩度對比與色相對比作為本研究之色彩對比變項;評估方式為請受測者觀看照片後,以七點量表填答明顯程度與偏好程度,共獲得100份有效問卷。第二階段為透過第一階段研究結果,選取20張差異較大的照片作為瞳位追蹤實驗與問卷施測之依據。第一階段研究結果顯示不同位置的建築物對於色彩對比的明顯程度感受不同,而各色彩對比變項與明顯程度大抵呈現正相關,另外在色彩對比變項與偏好程度之關係,會因為位置不同,而產生不同的狀況,然而大致上完全色彩對比與明度對比和偏好是呈現倒U字型的關係,而在彩度對比與色相對比上為負相關。第二階段瞳位追蹤實驗結果發現,建築物的凝視次數越高,感受到的明顯程度就越高,但是與偏好程度並不相關。透過以上研究結果可瞭解建築物位於不同位置對不同色彩對比變項在視覺景觀中的衝擊程度會有不同,藉此建立可實際運用之視覺衝擊預測模型,做為未來景觀規劃之參考。 | zh_TW |
| dc.description.abstract | Human activities often cause an irreversible impact on the visual landscape; therefore, visual impact assessment has become an increasingly important concern. This assessment process usually concerns the influence of factors such as the object’s form, size, color and location in regard to the visual impact. However in reality, the object’s form and size are decided and cannot be easily modified. Since location is a restriction as well, we can only adjust the color of the object and the environment’s color to reduce the visual impact. The aim of this study is to investigate the visual impact of different colors, as well as to compare different locations of a building on visual impact. This study used the obviousness level for the visual impact measurement. However, obviousness cannot be viewed as equivalent to preference; thus, this study enquired regarding the subject’s preference level. Furthermore, this study used eye tracking to obtain a more objective perspective of visual impact, and compared the results between eye tracking data and the questionnaire results. This study is separated into two parts, the first part used the software PHOTOSHOP for simulating the study photos, and then calculated the contrast between the building and the background. The study calculated contrast by using an absolute color difference formula, a lightness formula, a chrome formula and a hue formula as the color contrast variables. The study then asked subjects to provide quantities of photograph obviousness and preference on a seven point Likert scale. A total of 100 valid questionnaires were collected. The second part used the results of the first part, and selected 20 photos with large differences for the eye tracking experiment and the questionnaire. The results of the first part showed that different building locations have different influences on the subjects’ subjective degree of obviousness. Color contrast and obviousness are positively correlated. On the relationship between color contrast and preference for different locations different results were derived. In general, absolute color contrast and lightness contrast have an inverted U curve relationship to preference. Chrome contrast and hue contrast are negatively correlated with preference. In the second part of the study, the results showed that higher building fixation counts have higher obviousness. However, we found no relationship between fixation counts and preference. Through this result, we discovered that different building locations have different relationships with color contrast and visual impact. By using the study results, we can establish the visual impact predicting model and contribute it to future landscape planning. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:58:49Z (GMT). No. of bitstreams: 1 ntu-103-R01628312-1.pdf: 6120878 bytes, checksum: 76a20f3f9fb183fb5dba1b17384b54d6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 III 中文摘要 V Abstract VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究內容與流程 4 第二章 文獻回顧 5 第一節 視覺衝擊評估理論 5 第二節 色彩理論及相關研究 12 第三節 瞳位追蹤儀之理論與應用 35 第三章 研究方法 45 第一節 研究架構與假設 45 第二節 研究變項定義及測量方式 50 第三節 研究設計 54 第四節 資料處理與分析計畫 63 第四章 研究結果與討論 65 第一節 受測者背景資料分析 65 第二節 色彩對比與明顯程度之關係 69 第三節 色彩對比與偏好程度之關係 84 第四節 建築物位置與明顯程度之關係 106 第五節 凝視次數與明顯程度之關係 107 第六節 研究假設驗證 122 第五章 結論與建議 125 第一節 結論 125 第二節 討論 126 第二節 研究建議 136 參考文獻 141 附錄一 本研究照片及各變項數值 147 附錄二 瞳位追蹤儀應用結果數值 163 附錄三 研究調查問卷 165 | |
| dc.language.iso | zh-TW | |
| dc.subject | 偏好程度 | zh_TW |
| dc.subject | 天際線 | zh_TW |
| dc.subject | 色彩對比 | zh_TW |
| dc.subject | 瞳位追蹤 | zh_TW |
| dc.subject | 明顯程度 | zh_TW |
| dc.subject | Obviousness | en |
| dc.subject | Preference | en |
| dc.subject | Color Contrast | en |
| dc.subject | Skyline | en |
| dc.subject | Eye Tracking | en |
| dc.title | 建築物色彩與位置對視覺衝擊之影響 | zh_TW |
| dc.title | Assessment of Visual Impact of Building’s Color and Location on Landscape | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張俊彥(Chun-Yen Chang),鄭佳昆(Chia-Kuen Cheng),歐聖榮(Sheng-Jung Ou),曹正(Cheng Tsao) | |
| dc.subject.keyword | 明顯程度,偏好程度,色彩對比,天際線,瞳位追蹤, | zh_TW |
| dc.subject.keyword | Obviousness,Preference,Color Contrast,Skyline,Eye Tracking, | en |
| dc.relation.page | 165 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
