請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57689完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Chuan-Hsien Nieh | en |
| dc.contributor.author | 聶傳賢 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:58:08Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-17 | |
| dc.identifier.citation | 1. H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, Proc. IEEE 100, 1951 (2012).
2. Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009). 3. C. H. Cheng, F. S. Yeh, and A. Chin, Adv. Mater. 23, 902 (2011). 4. K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J. S. Kim, and B. H. Park, Nano Lett. 10, 1359-1363 (2010). 5. C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, IEEE Electron Device Lett. 27, 725–727 (2006). 6. J. Qi, M. Olmedo, J. G. Zheng, and J. Liu, Sci. Rep. 3, 2405 (2013). 7. W. J. Liu, X. A. Tran, H. Y. Yu, and X. W. Sun, ECS Solid State Lett. 2, 35 (2013). 8. P. Pavan, R. Bez, P. Olivo, E. Zanoni, Proc. IEEE 85, 1248-1271 (1997). 9. H. Yamane and M. Kobayashi, J. Appl. Phys. 83, 4862 (1998). 10. H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE, 98, 2201–2227 (2010). 11. T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. J. Kastner, N. Nagel, M. Moert, and C. Mazure, Microelectronics Reliab. 41, 947-950 (2001). 12. Y. C. Lai, F. C. Hsu, J. Y. Chen, J. H. He, T. C. Chang, Y. P. Hsieh, T. Y. Lin, Y. J. Yang, and Y. F. Chen, Adv. Mater. 25, 2733 (2013). 13. S. Song, B. Cho, T. W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y. H. Kahng, H. Hwang, and T. Lee, Adv. Mater. 22, 5048-5052 (2010). 14. K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi Appl. Phys. Lett. 90, 113501 (2007). 15. U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, IEEE Trans. Electron Devices 56, 186 (2009). 16. W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Appl. Phys. Lett. 92, 022110 (2008). 17. J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J. G. Zheng, and J. Liu, ACS Nano. 6, 1051 (2012). 18. H. H. Huang, W. C. Shih, and C. H. Lai, Appl. Phys. Lett. 96, 193505 (2010). 19. H. Shima, N. Zhong, and H. Akinaga, Appl. Phys. Lett. 94, 082905 (2009). 20. S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, S. V. Kalinin, and B. H. Park, Adv. Mater. 25, 2339-2343 (2013). 21. Online resource, http://en.wikipedia.org/wiki/Tin_dioxide. 22. L. Hu, J. Yan, M. Liao, L. Wu, and X. Fang, Small 7, 1012-1017 (2011). 23. C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Express 16, 16916 (2008). 24. M. L. Lu, T. Y. Lin, T. M. Weng, and Y. F. Chen, Opt. Express 19, 16266 (2011). 25. M. L. Lu, C. W. Lai, H. J. Pan, C. T. Chen, P. T. Chou, and Y. F. Chen, Nano Lett. 13, 1920-1927 (2013). 26. Y. J. Choil, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotechnology 19, 095508 (2008). 27. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G. W. Yang, J. Phys. Chem. C 112, 6643-6647 (2008). 28. Y. Wang, X. Jiang, and Y. Xia, J. Am. Chem. Soc. 125, 16176-16177 (2003). 29. K. Nagashima, T. Yanagida, K. Oka, and T. Dawai, Appl. Phys. Lett. 94, 242902 (2009). 30. C. C. Hu, Modern semiconductor devices for integrated circuits, Pearson Education, New Jersey (2010). 31. V. K. Zworykin, J. Hiller, and R. L. Snyder, ASTM Bull. 117, 15 (1942). 32. G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microananlysis, Plenum Press, New York and London (1981). 33. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165-3166 (2001). 34. C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, J. Electro. Mater. 35, 738 (2006). 35. S. Brivio, D. Perego, G. Tallarida, M. Bestetti, S. Franz, and S. Spiga, Appl. Phys. Lett. 103, 153506 (2013). 36. Y. C. Huang, P. Y. Chen, K. F. Huang, T. C. Chuang, H. H. Lin, T. S. Chin, R. S. Liu, Y. W. Lan, C. D. Chen, and C. H. Lai, NPG Asia Mater. 6, e85 (2014). 37. M. H. Lee, N. Lim, D. J. Ruebusch, A. Jamshidi, R. Kapadia, R. Lee, T. J. Seok, K. Takei, K. Y. Cho, Z. Fan, H. Jang, M. Wu, G. Cho, and A. Javey, Nano Lett. 11, 3425 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57689 | - |
| dc.description.abstract | 本論文主要目的在研究單根二氧化錫奈米線電阻式記憶體的特性,元件的運作機制可以用可變換二極體效應來解釋,這個效應是由於外加電壓下,元件內部的帶電缺陷會在半導體與金屬電極接面處累積,造成蕭特基能障變化,形成蕭特基二極體方向的轉換。元件電阻的變化可以達到 1000 倍,也有良好的穩定性和狀態維持時間。此外,此原件在負偏壓下擁有非常小的電流,這樣的特性有助於防止高密度原件之間的漏電流。因為奈米線減少了元件的體積和消耗的能量,加上蕭特基二極體特有的性質,這個元件可以用在高密度電路的發展。 | zh_TW |
| dc.description.abstract | Resistive switching is observed in single SnO2 nanowire device with two back-to-back Schottky diodes. The underlying mechanism can be interpreted well by the switchable diode effect, which is caused by tunable Schottky barrier height due to the drift of charged defects induced by external electrical field. A resistance window of more than 3 orders of magnitude has been achieved. The device also shows an excellent performance of endurance and retention time. Additionally, a very small current under negative bias is observed, which can avoid the sneaking current induced in the nearby devices. Due to the greatly reduced device size, power consumption and inherent nature of Schottky diode, the work shows here should be useful for the development of high density circuitries. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:58:08Z (GMT). No. of bitstreams: 1 ntu-103-R01222010-1.pdf: 3293885 bytes, checksum: bfcb1843b09b54fdff814bdaed65f7fc (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1 Introduction 1 Chapter 2 Background knowledge of experimental technique and studied nanomaterials 3 2.1 Flash memory and the candidates for next generation nonvolatile memory 3 2.1.1 Flash memory 3 2.1.2 Magnetoresistive random access memory (MRAM) 5 2.1.3 Phase change random access memory (PCRAM) 7 2.1.4 Ferroelectric random access memory (FeRAM) 8 2.2 Resistive random access memory (RRAM) 9 2.2.1 Resistive switching behaviors 9 2.2.2 Mechanisms for resistive switching 12 2.2.2.1 Oxygen vancancy conducting filament theory 12 2.2.2.2 Metal atom conducting filament theory 13 2.2.2.3 Electron trap theory 14 2.2.2.4 Switchable diode effect 16 2.3 SnO2 nanowires 18 2.4 Schottky contact between metal and semiconductor 22 Chapter 3 Experimental details and Sample preparation 24 3.1 Scanning Electron Microscopy 24 3.2 X-ray Diffraction (XRD) 26 3.3 Thermal Evaporation 27 3.4 Two terminal I-V measurement 29 3.5 Synthesization of SnO2 nanowires 30 3.6 Fabrication of SnO2 nanowire device 33 Chapter 4 Results and Discussion 35 Chapter 5 Conclusion 43 References 44 | |
| dc.language.iso | en | |
| dc.subject | 電阻式記憶體 | zh_TW |
| dc.subject | 蕭特基位障 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 蕭特基接觸 | zh_TW |
| dc.subject | 二氧化錫 | zh_TW |
| dc.subject | 氧空缺 | zh_TW |
| dc.subject | Schottky barrier | en |
| dc.subject | SnO2 | en |
| dc.subject | nanowire | en |
| dc.subject | RRAM | en |
| dc.subject | oxygen vacancy | en |
| dc.subject | Schottky contact | en |
| dc.title | 可轉換蕭特基二極體二氧化錫一維奈米線電阻式記憶體 | zh_TW |
| dc.title | Resistive Memory of Single SnO2 Nanowire Based Switchable Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林泰源(Tai-Yuan Lin),梁啟德(Chi-Te Liang) | |
| dc.subject.keyword | 二氧化錫,奈米線,電阻式記憶體,蕭特基接觸,蕭特基位障,氧空缺, | zh_TW |
| dc.subject.keyword | SnO2,nanowire,RRAM,Schottky contact,Schottky barrier,oxygen vacancy, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
