請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源(Chien-Yuan Pan) | |
| dc.contributor.author | Yi-Ting Tsai | en |
| dc.contributor.author | 蔡依廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:57:59Z | - |
| dc.date.available | 2015-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-17 | |
| dc.identifier.citation | Bers, D.M. (1982). A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. The American journal of physiology 242, C404-408.
Bahler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS letters 513, 107-113. Bezzina, C., Veldkamp, M.W., van Den Berg, M.P., Postma, A.V., Rook, M.B., Viersma, J.W., van Langen, I.M., Tan-Sindhunata, G., Bink-Boelkens, M.T., van Der Hout, A.H., et al. (1999). A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circulation research 85, 1206-1213. Biswas, S., Deschenes, I., Disilvestre, D., Tian, Y., Halperin, V.L., and Tomaselli, G.F. (2008). Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. The Journal of general physiology 131, 197-209. Bredt, D.S., and Snyder, S.H. (1989). Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America 86, 9030-9033. Burgoyne, R.D., O'Callaghan, D.W., Hasdemir, B., Haynes, L.P., and Tepikin, A.V. (2004). Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends in neurosciences 27, 203-209. Catterall, W.A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annual review of cell and developmental biology 16, 521-555. Chin, D., and Means, A.R. (2000). Calmodulin: a prototypical calcium sensor. Trends in cell biology 10, 322-328. Choi, J.S., Hudmon, A., Waxman, S.G., and Dib-Hajj, S.D. (2006). Calmodulin regulates current density and frequency-dependent inhibition of sodium channel Nav1.8 in DRG neurons. Journal of neurophysiology 96, 97-108. Choi, J.S., and Soderlund, D.M. (2006). Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes. Toxicology and applied pharmacology 211, 233-244. Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047-1058. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S., and Yue, D.T. (2001). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484-489. Deschenes, I., Neyroud, N., DiSilvestre, D., Marban, E., Yue, D.T., and Tomaselli, G.F. (2002). Isoform-specific modulation of voltage-gated Na+ channels by calmodulin. Circulation research 90, E49-57. Endoh, M., Yanagisawa, T., Taira, N., and Blinks, J.R. (1986). Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 73, III117-133. Feldkamp, M.D., Yu, L., and Shea, M.A. (2011). Structural and energetic determinants of apo calmodulin binding to the IQ motif of the Nav1.2 voltage-dependent sodium channel. Structure 19, 733-747. Findeisen, F., and Minor, D.L., Jr. (2010). Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation. Structure 18, 1617-1631. Fisone, G., Cheng, S.X., Nairn, A.C., Czernik, A.J., Hemmings, H.C., Jr., Hoog, J.O., Bertorello, A.M., Kaiser, R., Bergman, T., Jornvall, H., et al. (1994). Identification of the phosphorylation site for cAMP-dependent protein kinase on Na+,K+-ATPase and effects of site-directed mutagenesis. The Journal of biological chemistry 269, 9368-9373. Fluck, M., Waxham, M.N., Hamilton, M.T., and Booth, F.W. (2000). Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. Journal of applied physiology 88, 352-358. Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calcium-binding proteins. Journal of molecular biology 359, 509-525. Gu, C., and Cooper, D.M. (1999). Calmodulin-binding sites on adenylyl cyclase type VIII. The Journal of biological chemistry 274, 8012-8021. Guy, H.R., and Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proceedings of the National Academy of Sciences of the United States of America 83, 508-512. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv : European journal of physiology 391, 85-100. Hamilton, M.T., and Booth, F.W. (2000). Skeletal muscle adaptation to exercise: a century of progress. Journal of applied physiology 88, 327-331. Hamilton, S.L., and Reid, M.B. (2000). RyR1 modulation by oxidation and calmodulin. Antioxidants & redox signaling 2, 41-45. Hamilton, S.L., Serysheva, I., and Strasburg, G.M. (2000). Calmodulin and Excitation-Contraction Coupling. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 15, 281-284. Heinemann, S.H., Terlau, H., Stuhmer, W., Imoto, K., and Numa, S. (1992). Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441-443. Herzog, R.I., Liu, C., Waxman, S.G., and Cummins, T.R. (2003). Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 8261-8270. Hillsley, K., Lin, J.H., Stanisz, A., Grundy, D., Aerssens, J., Peeters, P.J., Moechars, D., Coulie, B., and Stead, R.H. (2006). Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. The Journal of physiology 576, 257-267. Hodgkin, A.L., and Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117, 500-544. Huxley, H.E. (2002). The mechanism of muscular contraction. Science 164:1356-1366, 1969. Clinical orthopaedics and related research, S6-17. Jurkat-Rott, K., Weber, M.A., Fauler, M., Guo, X.H., Holzherr, B.D., Paczulla, A., Nordsborg, N., Joechle, W., and Lehmann-Horn, F. (2009). K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proceedings of the National Academy of Sciences of the United States of America 106, 4036-4041. Kaplan, M.R., Cho, M.H., Ullian, E.M., Isom, L.L., Levinson, S.R., and Barres, B.A. (2001). Differential control of clustering of the sodium channels Nav1.2 and Nav1.6 at developing CNS nodes of Ranvier. Neuron 30, 105-119. Kim, J., Ghosh, S., Liu, H., Tateyama, M., Kass, R.S., and Pitt, G.S. (2004). Calmodulin mediates Ca2+ sensitivity of sodium channels. The Journal of biological chemistry 279, 45004-45012. Kohama, K., Takano-Ohmuro, H., Tanaka, T., Yamaguchi, Y., and Kohama, T. (1986). Isolation and characterization of myosin from amoebae of Physarum polycephalum. The Journal of biological chemistry 261, 8022-8027. Konishi, M., and Watanabe, M. (1998). Steady state relation between cytoplasmic free Ca2+ concentration and force in intact frog skeletal muscle fibers. The Journal of general physiology 111, 505-519. La Bella, R., Garcia-Garayoa, E., Bahler, M., Blauenstein, P., Schibli, R., Conrath, P., Tourwe, D., and Schubiger, P.A. (2002). A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjugate chemistry 13, 599-604. Messner, D.J., and Catterall, W.A. (1985). The sodium channel from rat brain. Separation and characterization of subunits. The Journal of biological chemistry 260, 10597-10604. Mitrovic, N., George, A.L., Jr., Rudel, R., Lehmann-Horn, F., and Lerche, H. (1999). Mutant channels contribute <50% to Na+ current in paramyotonia congenita muscle. Brain : a journal of neurology 122 ( Pt 6), 1085-1092. Neher, E., Sakmann, B., and Steinbach, J.H. (1978). The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Archiv : European journal of physiology 375, 219-228. Nelson, M.R., and Chazin, W.J. (1998). Structures of EF-hand Ca2+-binding proteins: diversity in the organization, packing and response to Ca2+ binding. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 11, 297-318. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., et al. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127. Olwin, B.B., Edelman, A.M., Krebs, E.G., and Storm, D.R. (1984). Quantitation of energy coupling between Ca2+, calmodulin, skeletal muscle myosin light chain kinase, and kinase substrates. The Journal of biological chemistry 259, 10949-10955. Peracchia, C., Sotkis, A., Wang, X.G., Peracchia, L.L., and Persechini, A. (2000). Calmodulin directly gates gap junction channels. The Journal of biological chemistry 275, 26220-26224. Rhoads, A.R., and Friedberg, F. (1997). Sequence motifs for calmodulin recognition. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 11, 331-340. Rivolta, I., Abriel, H., Tateyama, M., Liu, H., Memmi, M., Vardas, P., Napolitano, C., Priori, S.G., and Kass, R.S. (2001). Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. The Journal of biological chemistry 276, 30623-30630. Rusconi, R., Combi, R., Cestele, S., Grioni, D., Franceschetti, S., Dalpra, L., and Mantegazza, M. (2009). A rescuable folding defective Nav1.1 (SCN1A) sodium channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies? Human mutation 30, E747-760. Sarhan, M.F., Tung, C.C., Van Petegem, F., and Ahern, C.A. (2012). Crystallographic basis for calcium regulation of sodium channels. Proceedings of the National Academy of Sciences of the United States of America 109, 3558-3563. Schlief, T., Schonherr, R., Imoto, K., and Heinemann, S.H. (1996). Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. European biophysics journal : EBJ 25, 75-91. Shaw, S.K., Owolabi, S.A., Bagley, J., Morin, N., Cheng, E., LeBlanc, B.W., Kim, M., Harty, P., Waxman, S.G., and Saab, C.Y. (2008). Activated polymorphonuclear cells promote injury and excitability of dorsal root ganglia neurons. Experimental neurology 210, 286-294. Sola, C., Barron, S., Tusell, J.M., and Serratosa, J. (2001). The Ca2+/calmodulin system in neuronal hyperexcitability. The international journal of biochemistry & cell biology 33, 439-455. Struyk, A.F., Scoggan, K.A., Bulman, D.E., and Cannon, S.C. (2000). The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 8610-8617. Stuhmer, W., Conti, F., Suzuki, H., Wang, X.D., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597-603. Sun, Y.M., Favre, I., Schild, L., and Moczydlowski, E. (1997). On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. The Journal of general physiology 110, 693-715. Theoharis, N.T., Sorensen, B.R., Theisen-Toupal, J., and Shea, M.A. (2008). The neuronal voltage-dependent sodium channel type II IQ motif lowers the calcium affinity of the C-domain of calmodulin. Biochemistry 47, 112-123. Veldkamp, M.W., Viswanathan, P.C., Bezzina, C., Baartscheer, A., Wilde, A.A., and Balser, J.R. (2000). Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circulation research 86, E91-97. Wayman, G.A., Lee, Y.S., Tokumitsu, H., Silva, A.J., and Soderling, T.R. (2008). Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914-931. Williams, J.H., and Klug, G.A. (1995). Calcium exchange hypothesis of skeletal muscle fatigue: a brief review. Muscle & nerve 18, 421-434. Xia, Z., and Storm, D.R. (2005). The role of calmodulin as a signal integrator for synaptic plasticity. Nature reviews Neuroscience 6, 267-276. Young, K.A., and Caldwell, J.H. (2005). Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin. The Journal of physiology 565, 349-370. Yu, F.H., and Catterall, W.A. (2003). Overview of the voltage-gated sodium channel family. Genome biology 4, 207. Zuhlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W., and Reuter, H. (1999). Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159-162. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57686 | - |
| dc.description.abstract | 電壓依賴型鈉離子通道 (Navs)在動作電位啟動及傳遞上,扮演重要角色。鈣調素 (calmodulin, CaM)為鈣離子感受蛋白,可與Navs C端的一段高度保守序列,IQ motif結合而調控其活性,鈣調素N端和C端各有兩個EF-hand鈣離子結合位。本實驗中,將Nav1.4表現於293T細胞中,以全細胞膜片箝技術,測量Na+電流。鈣調素使電流密度從-82.4 ± 7.7顯著增加到-127.8 ± 15.6 pA/pF,而無鈣離子結合功能之突變型鈣調素 (CaMtetra),則不影響電流密度 (-76.5 ± 12.6 pA/pF)。C端無鈣離子結合功能的突變型鈣調素 (CaM34),可顯著增加電流密度 (-132.5 ± 13.3 pA/pF),然而N端無鈣離子結合功能的突變型鈣調素 (CaM12) 則無此效果(-73.0 ± 10.4 pA/pF)。提高細胞內液鈣離子濃度至0.2和10 μM,可更進一步增加電流密度。然而鈣調素會縮短通道由不活化再回到可再開啟的時間,從6.0 ± 0.5增加到6.4 ± 0.8 msec。這些結果顯示在生理狀態下,當細胞內鈣離子濃度上升,鈣調素提高Nav1.4的電流密度度,來調節興奮性細胞的活性。 | zh_TW |
| dc.description.abstract | Voltage-gated sodium channels (Navs) are essential for the initiation and propagation of action potentials in excitable cells. Calmodulin (CaM) is a calcium sensor protein and can bind to the highly conserved IQ motif at the intracellular C-terminal of Navs to regulate channel activities. Each of the N- and C-lobes in CaM has two EF-hand Ca2+-binding motifs and is known to have distinct effects in modulating channel activities. In this report, we co-expressed CaM and mutations with Nav1.4 to characterize how CaM regulates the channel activities. I expressed these proteins in 293T cells and measured the Na+ currents with patch-clamp technique in whole-cell mode. CaM significantly enhanced the current density from -87.3 ± 8.8 to -137.3 ± 16.5 pA/pF, however, CaM1234, which has no Ca2+ binding capability, had little effect on the current density (-76.5 ± 12.6 pA/pF). CaM34, which has no Ca2+-binding abilities at the C-lobe, significantly enhanced the current density -135.0 ± 15.6 pA/pF; in contrast, CaM12, which loses Ca2+-binding abilities at the N-lobe, did not have the effect in enhancing the current density (-81.2 ± 13.1 pA/pF). Elevating the Ca2+ concentration in the pipette solution to 0.2 and 10 μM further enhanced the current density in the presence of CaM overexpression.CaM co-expression significantly shortened the recovery time of Nav1.4 from 3.3 ± 0.2 to 3.0 ± 0.0 msec. These results demonstrate that, under physiologiucal conditions when the intracellular Ca2+ concentration elevates, CaM activation leads to the enhancement of the Nav1.4 currents to regulate the activities of excitable cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:57:59Z (GMT). No. of bitstreams: 1 ntu-103-R01B41008-1.pdf: 6087732 bytes, checksum: 76e78976201938deeae88b907f802401 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 1
摘要 2 中文摘要 2 英文摘要 3 前言 4 電壓依賴型鈉離子通道(voltage-gated sodium channel, Navs ) 4 電壓依賴型鈉離子通道的結構 5 電壓依賴型鈉離子通道離子通透性的選擇 6 電壓依賴型鈉離子通道的組織分布 7 鈣調素(Calmodulin, CaM) 7 IQ motif 9 實驗目的 12 實驗材料與方法 13 化學藥品與緩衝液 13 人類胚腎 (293T)細胞株培養 14 質體製備 14 勝任細胞製備 15 轉染作用 (Transformation) 15 轉移感染(Transfection) 15 點突變 16 聚合酶連鎖反應(Polymerasae Chain Reaction, PCR) 16 電生理紀錄-全細胞膜電箝紀錄(whole cell patch clamp) 16 資料分析 17 結果 18 鈣調素可增加Nav1.4電流密度 18 鈣調素N端有正常鈣離子結合能力時可增加Nav1.4電流密度 19 鈣離子濃度上升無助於Nav1.4單獨存在293T細胞時 20 鈣離子濃度上升有助於鈣調素增加Nav1.4電流密度 21 當鈣離子濃度上升有助於C-lobe失去鈣離子結合能力之鈣調素增加Nav1.4電流密度 22 當鈣離子濃度上升無助於失去鈣離子結合能力之鈣調素或只有N-lobe失去鈣離子結合能力之鈣調素增加Nav1.4電流密度 24 鈉離子通道IQ motif的各種突變 25 討論 27 鈣調素對Nav1.4的功效 27 鈣調素的鈣離子結合能力對Nav1.4的功效 28 鈣離子對鈣調素調控Nav1.4上的功效 29 IQ motif 突變會影響電壓依賴行鈉離子通道的活性 30 參考文獻 32 表 42 圖解 48 圖 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電壓依賴型鈉離子通道 | zh_TW |
| dc.subject | 鈣調素 | zh_TW |
| dc.subject | 鈣離子 | zh_TW |
| dc.subject | 全細胞膜片箝技術 | zh_TW |
| dc.subject | IQ motif | zh_TW |
| dc.subject | Nav1.4 | en |
| dc.subject | CaM | en |
| dc.subject | Ca+2 | en |
| dc.subject | IQ motif | en |
| dc.subject | whole cell patch clamp | en |
| dc.title | 鈣調素對電壓依賴型鈉離子通道Nav1.4的影響 | zh_TW |
| dc.title | The Effects of Calmodulin on the Voltage-gated Sodium Channels, Nav1.4 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 閔明源(Ming-Yuan Min),楊雅晴(Ya-Chin Yang) | |
| dc.subject.keyword | 電壓依賴型鈉離子通道,鈣調素,鈣離子,IQ motif,全細胞膜片箝技術, | zh_TW |
| dc.subject.keyword | Nav1.4,CaM,Ca+2,IQ motif,whole cell patch clamp, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
