Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57668Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Jia-Min Zeng | en |
| dc.contributor.author | 曾家珉 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:57:00Z | - |
| dc.date.available | 2019-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-18 | |
| dc.identifier.citation | [1] M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S. Ruvimov, ‡, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov. Ultranarrow Luminescence Lines from Single Quantum Dots. Phys. Rev. Lett., 74:4043, 1995.
[2] W. Zhou, O. Qasaimeh, J. Phillips, S. Krishna, and P. Bhattacharya. Bias-controlled wavelength switching in coupled-cavity In0.4Ga0.6As/GaAs self-organized quantum dot lasers. Appl. Phys. Lett., 74:783, 1999. [3] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi. Self-Assembly of CdSe/ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc., 122:12142, 2000. [4] S. Coe, W. K. Woo, M. Bawendi, and Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 420:800, 2002. [5] P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum dots. J. Phys. Chem. B, 110:25451, 2006. [6] F. F. Amos, S. A. Morin, J. A. Streifer, R. J. Hamers, and S. Jin. Photodetector Arrays Directly Assembled onto Polymer Substrates from Aqueous Solution. J. Am. Chem. Soc., 129:14296, 2007. [7] U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer. Excitons in type-II quantum dots: Finite offsets. Phys. Rev. B, 52:2697, 1995. [8] M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and W.-X. Ni. Spatially direct and indirect transitions observed for Si/Ge quantum dots. Appl. Phys. Lett., 82:4785, 2003. [9] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov. Carrier dynamics in type-II GaSb/GaAs quantum dots. Phys. Rev. B, 57:4635, 1998. [10] S. Datta and B. Das. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 56:665, 1990. [11] E. Oh, K. J. Yee, S. M. Soh, J. U. Lee, J. C. Woo, H. S. Jeon, D. S. Kim, S. Lee, J. K. Furdyna, H. C. Ri, H. S. Chany, and S. H. Park. Spin polarization of self-assembled CdSe quantum dots in ZnMnSe. Appl. Phys. Lett., 83:4604, 2003. [12] W.C. Fan, J.T. Ku, W.C. Chou, W.K. Chen, W.H. Chang, C.S. Yang, and C.H. Chia. Magneto-optical properties of ZnMnTe/ZnSe quantum dots. J. Cryst. Growth, 323:380, 2011. [13] F. Iikawa, M. P. F. Godoy, M. K. K. Nakaema, M. J. S. P. Brasil, M. Z. Maialle, M. A. Degani, E. Ribeiro, G. Medeiros-Ribeiro, W. Carvalho Jr., and J. A. Brum. Optical properties of type-I and II quantum dots. Braz. J. Phys., 34:555, 2004. [14] L. Esaki and R. Tsu. Superlattice and Negative Differential Conductivity in Semiconductors. IBMJ. Res. Develop., 14:61, 1970. [15] G.D. Gilliland. Photoluminescence spectroscopy of crystalline semiconductors. Mater. Sci. Eng. R, 18:99, 1997. [16] J. J. Sakurai. Advanced Quantum Mechanics. Addison-Wesley, Reading, MA, 1967. [17] J. C. Slater. Quantum Theory of Atomic Structure. McGrew-Hill, New York, 1960. [18] J. M. Luttinger. Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory. Phys. Rev., 102:1030, 1956. [19] M. Cardona P. Y. Yu. Fundamental of Semiconductors. Springer,Berlin, 2001. [20] Z. G. Yu, S. Krishnamurthy, Mark van Schilfgaarde, and N. Newman. Spin relaxation of electrons and holes in zinc-blende semiconductors. Phys. Rev. B, 71:245312, 2005. [21] B. P. Zakharchenya F. Meier. Optical Orientation. Elsevier Science, Amsterdam, 1984. [22] A. A. Saranin A. V. Zotov M. Katayama K. Oura, V. G. Lifshits. Surface Science-An Introduction. Springer-Verlag, Heidelberg, 2003. [23] P. V. Satyam D. K. Goswami, B. Satpati and B. N. Dev. Growth of self-assembled nanostructures by molecular beam epitaxy. Current Science, 84:7, 2003. [24] D. J. Eaglesham and M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett., 64:1943, 1990. [25] L. Lee, W. C. Fan, K. F. Chien, A. J. Tzou, and W. C. Chou. Growth evolution and magneto-optical characteristics of self-assembled ZnTe/ZnMnSe quantum dots. J. Cryst. Growth, 378:222, 2013. [26] J. K. Furdyna. Diluted magnetic semiconductors. J. Appl. Phys., 64:R29, 1988. [27] G. Reuscher W. Ossau G. Schmidt A. Waag & L. W. Molenkamp R. Fiederling, M. Keim. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 402:787, 1999. [28] F. Xiu, Y. Wang, J. Kim, P. Upadhyaya, Y. Zhou, X. Kou, W. Han, R. K. Kawakami, J. Zou, and K. L. Wang. Room temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots. ACS Nano, 4:4948, 2010. [29] R. Viswanatha, J. M. Pietryga, V. I. Klimov, and S. A. Crooker. Spin-polarized Mn2+ emission from Mn-Doped colloidal nanocrystals. Phys. Rev. Lett., 107:067402, 2011. [30] M. C. Kuo, J. S. Hsu, J. L. Shen, K. C. Chiu, W. C. Fan, Y. C. Lin, C. H. Chia, W. C. Chou, M. Yasar, R. Mallory, A. Petrou, and H. Luo. Photoluminescence studies of type-II diluted magnetic semiconductor ZnMnTe/ZnSe quantum dots. Appl. Phys. Lett., 89:263111, 2006. [31] M. P. Mikhailova and A. N. Titkov. Type II heterojunctions in the GaInAsSb/GaSb system. Semicond. Sci. Technol., 9:1279, 1994. [32] C. Weisbuch and B. Vinter. Quantum Semiconductor Structure: Fundamentals and Applications. Academic, CA, 1991. [33] E. Oh, K. J. Yee, S. M. Soh, J. U. Lee, J. C. Woo, H. S. Jeon, D. S. Kim, S. Lee, J. K. Furdyna, H. C. Ri, H. S. Chany, and S. H. Park. Spin polarization of self-assembled CdSe quantum dots in ZnMnSe. Appl. Phys. Lett., 83:4604, 2003. [34] T. Jungwirth, K. Y. Wang, J. Mašek, K. W. Edmonds, Jurgen Konig, Jairo Sinova, M. Polini, N. A. Goncharuk, A. H. MacDonald, M. Sawicki, A. W. Rushforth, R. P. 50 Campion, L. X. Zhao, C. T. Foxon, and B. L. Gallagher. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B, 72:165204, 2005. [35] K. F. Eid, B. L. Sheu, O. Maksimov, M. B. Stone, P. Schiffer, and N. Samarth. Nanoengineered curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl. Phys. Lett., 86:152505, 2005. [36] K. C. Ku, S. J. Potashnik, R. F. Wang, S. H. Chun, P. Schiffer, N. Samarth, M. J. Seong, A. Mascarenhas, E. Johnston-Halperin, R. C. Myers, A. C. Gossard, and D. D. Awschalom. Highly enhanced curie temperature in low-temperature annealed [Ga,Mn]As epilayers. Appl. Phys. Lett., 82:2302, 2003. [37] D. Chiba, K. Takamura, F. Matsukura, and H. Ohno. Effect of low-temperature annealing on (Ga,Mn)As trilayer structures. Appl. Phys. Lett., 82:3020, 2003. [38] Y. Rajakarunanayake, R. H. Miles, G. Y. Wu, and T. C. McGill. Band structure of ZnSe-ZnTe superlattices. Phys. Rev. B, 37:10212, 1988. [39] J. Hubner D. Hagele W. W. Ruhle T. Hartmann P. J. Klar W. Heimbrodt M. Lampalzer K. Volz M. Oestreich, M. Bender and W. Stolz. Spin injection, spin transport and spin coherence. Semicond. Sci. Technol., 17:285, 2002. [40] Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee. Single-crystalline ZnTe nanowires for application as highperformance Green/Ultraviolet photodetector. Opt. Express, 19:6100, 2011. [41] W. Promnopas, T. Thongtem, and S. Thongtem. ZnTe semiconductor-polymer gel composited electrolyte for conversion of solar energy. J. Nanomater., 2014:6, 2014. [42] B. Nie, L. B. Luo, J. J. Chen, J. G. Hu, C. Y. Wu, L. Wang, Y. Q. Yu, Z. F. Zhu, and J. S. Jie. Fabrication of p-type ZnSe:Sb nanowires for high-performance ultraviolet light photodetector application. Nanotechnology, 24:095603, 2013. [43] Y. Rajakarunanayake, R. H. Miles, G. Y. Wu, and T. C. McGill. Band offset of the ZnSe-ZnTe superlattices: A fit to photoluminescence data by k-p theory. J. Vac. Sci. Technol. B, 6:1354, 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57668 | - |
| dc.description.abstract | 本論文研究碲化鋅量子點/硒化鋅第二型結構之旋偏振特性,我們發現雖然本奈米異質結構並沒有包含磁性物質,然而螢光會展現不同的旋偏振特性。我們研究發現使用不同的波長的雷射激發光,可以使其樣品展現不同的螢光的旋偏振特性。這樣的獨特旋偏振性質,在這個發展已久且已經有成熟的半導體元件的材料中,添加了一個新的特性,相信這個研究結果對新穎半導體元件的開發必定有所貢獻。 | zh_TW |
| dc.description.abstract | Spin polarization of light emission arising from self-assembled ZnTe/ZnSe quantum dots grown by molecular beam epitaxy is investigated. It is found that the magnitude and sign of the degree of spin polarization can be drastically
manipulated by excitation wavelength. The underlying mechanisms can be explained well based on the combination of band alignment, energy level splitting, as well as selection rule of optical transitions. The unique tunability of spin polarization of light emission by excitation wavelength adds an unprecedented feature to semiconductor materials, which have been studies for quite a long time. It is believed that the results obtained in this study will pave a key step for the development of optospintronics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:57:00Z (GMT). No. of bitstreams: 1 ntu-103-R01245010-1.pdf: 6730684 bytes, checksum: 7eacc2ade9e304e41f0edb71e1fc27e9 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書i
致謝ii 中文摘要iv Abstract v Contents vi List of Figures viii 1 Introduction 1 2 Theoretical background 4 2.1 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quantum confinement effect . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Theory of Photoluminescence . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Spin-orbit coupling in semiconductor . . . . . . . . . . . . . . . . . . . 15 2.5 Spin-dependent selection rule . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Experimental Details 27 3.1 Monolayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Molecular Beam Epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Reversing spin polarization of light emission from ZnTe quantum dots grown on ZnSe by excitation wavelength 34 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusions 45 References 46 | |
| dc.language.iso | en | |
| dc.subject | 碲化鋅 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 硒化鋅 | zh_TW |
| dc.subject | 旋偏振 | zh_TW |
| dc.subject | 第二型半導體 | zh_TW |
| dc.subject | QD | en |
| dc.subject | ZnTe | en |
| dc.subject | spin | en |
| dc.subject | ZnSe | en |
| dc.subject | polarization | en |
| dc.title | 硒化鋅/碲化鋅量子點/硒化鋅第二型半導體結構之光學旋偏振特性研究 | zh_TW |
| dc.title | Optical properties of circular polarization of ZnSe/ZnTe Quantum dots/ZnSe type II semiconductor heterostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁啟德(Chi-Te Liang),林泰源(Tai-Yuan Lin) | |
| dc.subject.keyword | 碲化鋅,量子點,硒化鋅,旋偏振,第二型半導體, | zh_TW |
| dc.subject.keyword | spin,ZnTe,ZnSe,QD,polarization, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| Appears in Collections: | 應用物理研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 6.57 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
