Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorChu-Chien Luen
dc.contributor.author呂居謙zh_TW
dc.date.accessioned2021-06-16T06:56:57Z-
dc.date.available2017-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-18
dc.identifier.citation[1] S. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening, Acta. Metall. 27 (1979),
pp. 1084-1095.
[2] E. De Giorgi, Convergnece problems for functionals and operators, In: Proc.
Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora,
1979, pp. 131-188.
[3] N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems,
Math. Ann. 311 (1998), no. 3, 481-491.
[4] L. Ambrosio, X. Cabr e, Entire solutions of semilinear elliptic equations in R3
and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739.
[5] O. Savin, Phase Transitions, Minimal Surfaces and A Conjecture of De Giorgi,
Current Developments in Mathematics Volume 2009 (2010), 1-204
[6] M. del Pino, M. Kowalczyk, and JunchengWei A counterexample to a conjecture
by De Giorgi in large dimensions C. R. Acad. Sci. Paris, Ser. I 346 (2008)
1261-1266
[7] X.F. Chen, J.S. Guo, F. Hamel, H. Ninomiya, and J.M. Roquejo re, travelling
waves with paraboloid Di erential Equations, 206:399 437, 2004.
20
[8] H. Ninomiya and M. Taniguchi, Existence and global stability of travelling
curved fronts in the Allen-Cahn equations, J. Di erential Equations 213 (2005),
no. 1, 204{233.
[9] H. Ninomiya and M. Taniguchi. Global stability of travelling curved fronts in
the Allen{Cahn equations. Discrete Contin. Dynam. Syst.15(2006), 819{832
[10] Y.Kurokawa, M. Taniguchi, Multi-dimensional pyramidal travelling fronts in
the Allen-Cahn equations, Proceedings of the Royal Society of Edinburgh, 141A,
1031-1054, 2011
[11] W.M Ni, and M. Taniguchi, travelling fronts of pyramidal shaped in competition-
di usion systems, Networks and Heterogeneous Media, Vol. 8, Num. 1(2013),
379-395.
[12] C.D. Levermore, J.X. Xin, Multidimensional sstability of travelling waves in a
bistable reaction-di usion equation II, Comm. in Partial Di erential Equation
17 (1992) 1901-1924.
[13] H. Matano, M. Nara, M. Taniguchi, Stability of planar waves in the Allen-Cahn
equations, Comm. in Partial Di erential Equations Vol.34 (2009) 976-1002.
[14] W.J Cheng, W.T Li, and Z.C. Wang, Multidimensional stability of V -shaped
travelling fronts in the allen Cahn euqation. Sci China Math, 2013, 56: 1969-
1982, doi: 10.1007/s11425-013-4699-5.
[15] M. Taniguchi, The uniqueness and asymptotic stability of pyramidal travelling
fronts in the Allen-Cahn equations, Journal of Di erential Equations Vol. 237,
No 1. (2007), 61-76
[16] D. Sattinger, On the stability of travelling waves, Adv. in Math., 22(1976),
312-355.
21
[17] P.C. FIFE AND J.B. Mcleod, The approach of solutions of non-linear di usion
equations to traveling front solutions, Arch. Rational Mech. Anal. 65 (1977),
pp. 335-361.
[18] Y.H. Du, Z.M. Gou, The stefan problem for the Fisher-KPP equation, Journal
of Di erential Equations 253(2012), p.996-1035
[19] Y.H.Du, Z.M. Gou, Spreading-vanishing dichotomy in a di usive logistic model
with a free boundary, II, J. Di erential Equations, 250(2011),pp.4336{4366
[20] D.H. Sattinger Monotone Methods in Nonlinear Elliptic and Parabolic Bound-
ary Value Problems, Indiana University Mathematics Journal, Vol.21, No. 11,
p.979-1000, 1972.
[21] M.H. Protter, H.F. Weinberger, Maximum Principles in Di erential Equations,
Prentice-Hall, 1967.
[22] Y.H. Du, B.D Lou, Spreading and vanishing in nonlinear di usion problems
with free boundaries, J. Eur. Math. Soc., to appear. (arXiv 1301.5373)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57667-
dc.description.abstract本文探討由建造上下解以及使用單調疊代法來建構的高維度的Allen-Cahn方程式
ut = DΔ u + f(u)的非平面行波解,並透過此種方法來討論其自由邊界問題的上下解以及金字塔型的的存在之可能性.
zh_TW
dc.description.abstractIn this thesis, we discuss the non-planar travelling wave solution for the Allen-Cahn reaction-diffusion equation in high dimension ut = D Δu + f(u) by constructing super-sub solutions and use the monotonic iteration method. Also,
we use this method to discuss the super-solution and sub-solution for free boundary problem and also the possibility of the existence of a pyramidal-shaped solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:56:57Z (GMT). No. of bitstreams: 1
ntu-103-R01221003-1.pdf: 387262 bytes, checksum: 6c4035ec8f0f8d4c2b848305e62881ed (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
1 Introduction 1
1.1 Reaction-Diusion equation: the travelling wave solution for bistable
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The free boundary problem, Stefan Condition . . . . . . . . . . . . . 2
2 Pyramidal Shaped Travelling Fronts 3
2.1 Monotone Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pyramid and the weak sub-solution . . . . . . . . . . . . . . . . . . . 6
2.3 Super-solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Discussion on Free Boundary Problem 15
3.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Spreading-Vanishing Dichotomy . . . . . . . . . . . . . . . . . . . . . 16
3.3 Survey on Pyramidal Shaped Solution . . . . . . . . . . . . . . . . . 17
參考書目 20
dc.language.isozh-TW
dc.subject反應擴散方程zh_TW
dc.subject自由邊界問題zh_TW
dc.subject金字塔型zh_TW
dc.subject行波?zh_TW
dc.subjectfree boundary problemen
dc.subjectreaction-diffusion equationen
dc.subjecttravelling wave solutionsen
dc.subjectpyramidal-shapeden
dc.title高維度的Allen-Cahn方程之非平面行波解及相關問題zh_TW
dc.titleHigh Dimensional Non-planar travelling Wave Solution for
Allen-Cahn Equation and Related Topics
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王藹農(Ai-Nung Wang),夏俊雄(Chun-Hsiung Hsia)
dc.subject.keyword反應擴散方程,行波?,金字塔型,自由邊界問題,zh_TW
dc.subject.keywordreaction-diffusion equation,travelling wave solutions,pyramidal-shaped,free boundary problem,en
dc.relation.page22
dc.rights.note有償授權
dc.date.accepted2014-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
378.19 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved