Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲(Ling Chao)
dc.contributor.authorChung-Ta Hanen
dc.contributor.author韓宗達zh_TW
dc.date.accessioned2021-06-16T06:56:08Z-
dc.date.available2017-07-31
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-07-18
dc.identifier.citation1. Phillips, K. S.; Dong, Y.; Carter, D.; Cheng, Q., Stable and Fluid Ethylphosphocholine Membranes in a Poly(dimethylsiloxane) Microsensor for Toxin Detection in Flooded Waters. Analytical Chemistry 2005, 77, 2960-2965.
2. Castellana, E. T.; Cremer, P. S., Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports 2006, 61, 429-444.
3. Jonsson, M. P.; Jonsson, P.; Dahlin, A. B.; Hook, F., Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano letters 2007, 7, 3462-3468.
4. Chen, S.; Zheng, J.; Li, L.; Jiang, S., Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:  Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society 2005, 127, 14473-14478.
5. Chapman, D., Biomembranes and new hemocompatible materials. Langmuir 1993, 9, 39-45.
6. Deng, Y.; Wang, Y.; Holtz, B.; Li, J.; Traaseth, N.; Veglia, G.; Stottrup, B. J.; Elde, R.; Pei, D.; Guo, A.; Zhu, X. Y., Fluidic and Air-Stable Supported Lipid Bilayer and Cell-Mimicking Microarrays. Journal of the American Chemical Society 2008, 130, 6267-6271.
7. Fabre, R. M.; Talham, D. R., Stable supported lipid bilayers on zirconium phosphonate surfaces. Langmuir : the ACS journal of surfaces and colloids 2009, 25, 12644-12652.
8. Oberts, B. P.; Blanchard, G. J., Formation of Air-Stable Supported Lipid Monolayers and Bilayers. Langmuir : the ACS journal of surfaces and colloids 2009, 25, 2962-2970.
9. Fang, Y., Air stability of supported lipid membrane spots. Chemical Physics Letters 2011, 512, 258-262.
10. Fang, Y., Spreading and Segregation of Lipids in Air-Stable Lipid Microarrays. Journal of the American Chemical Society 2006, 128, 3158-3159.
11. Fang, Y.; Frutos, A. G.; Lahiri, J., Membrane Protein Microarrays. Journal of the American Chemical Society 2002, 124, 2394-2395.
12. Ross, E. E.; Bondurant, B.; Spratt, T.; Conboy, J. C.; O'Brien, D. F.; Saavedra, S. S., Formation of Self-Assembled, Air-Stable Lipid Bilayer Membranes on Solid Supports. Langmuir : the ACS journal of surfaces and colloids 2001, 17, 2305-2307.
13. Halter, M.; Nogata, Y.; Dannenberger, O.; Sasaki, T.; Vogel, V., Engineered Lipids That Cross-Link the Inner and Outer Leaflets of Lipid Bilayers. Langmuir 2004, 20, 2416-2423.
14. Conboy, J. C.; Liu, S.; O'Brie, D. F.; Saavedra, S. S., Planar Supported Bilayer Polymers Formed from Bis-Diene Lipids by Langmuir−Blodgett Deposition and UV Irradiation. Biomacromolecules 2003, 4, 841-849.
15. Albertorio, F.; Diaz, A. J.; Yang, T.; Chapa, V. A.; Kataoka, S.; Castellana, E. T.; Cremer, P. S., Fluid and Air-Stable Lipopolymer Membranes for Biosensor Applications. Langmuir : the ACS journal of surfaces and colloids 2005, 21, 7476-7482.
16. Holden, M. A.; Jung, S.-Y.; Yang, T.; Castellana, E. T.; Cremer, P. S., Creating Fluid and Air-Stable Solid Supported Lipid Bilayers. Journal of the American Chemical Society 2004, 126, 6512-6513.
17. Dong, Y.; Phillips, K. S.; Cheng, Q., Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). Lab on a chip 2006, 6, 675-681.
18. Albertorio, F.; Chapa, V. A.; Chen, X.; Diaz, A. J.; Cremer, P. S., The α,α-(1→1) Linkage of Trehalose Is Key to Anhydrobiotic Preservation. Journal of the American Chemical Society 2007, 129, 10567-10574.
19. Harland, C. W.; Botyanszki, Z.; Rabuka, D.; Bertozzi, C. R.; Parthasarathy, R., Synthetic Trehalose Glycolipids Confer Desiccation Resistance to Supported Lipid Monolayers. Langmuir 2009, 25, 5193-5198.
20. Bennun, S. V.; Faller, R.; Longo, M. L., Drying and Rehydration of DLPC/DSPC Symmetric and Asymmetric Supported Lipid Bilayers: a Combined AFM and Fluorescence Microscopy Study. Langmuir : the ACS journal of surfaces and colloids 2008, 24, 10371-10381.
21. Ricker, J. V.; Tsvetkova, N. M.; Wolkers, W. F.; Leidy, C.; Tablin, F.; Longo, M.; Crowe, J. H., Trehalose Maintains Phase Separation in an Air-Dried Binary Lipid Mixture. Biophysical Journal 2003, 84, 3045-3051.
22. Chiantia, S.; Kahya, N.; Schwille, P., Dehydration Damage of Domain-Exhibiting Supported Bilayers:  An AFM Study on the Protective Effects of Disaccharides and Other Stabilizing Substances. Langmuir : the ACS journal of surfaces and colloids 2005, 21, 6317-6323.
23. Oliver, A. E.; Kendall, E. L.; Howland, M. C.; Sanii, B.; Shreve, A. P.; Parikh, A. N., Protecting, patterning, and scaffolding supported lipid membranes using carbohydrate glasses. Lab on a chip 2008, 8, 892-897.
24. Bally, M.; Bailey, K.; Sugihara, K.; Grieshaber, D.; Voros, J.; Stadler, B., Liposome and lipid bilayer arrays towards biosensing applications. Small 2010, 6, 2481-2497.
25. Tanaka, M.; Sackmann, E., Polymer-supported membranes as models of the cell surface. Nature 2005, 437, 656-663.
26. Yamazaki, V.; Sirenko, O.; Schafer, R. J.; Nguyen, L.; Gutsmann, T.; Brade, L.; Groves, J. T., Cell membrane array fabrication and assay technology. BMC biotechnology 2005, 5, 18.
27. Jackman, R. J.; Duffy, D. C.; Ostuni, E.; Willmore, N. D.; Whitesides, G. M., Fabricating Large Arrays of Microwells with Arbitrary Dimensions and Filling Them Using Discontinuous Dewetting. Analytical Chemistry 1998, 70, 2280-2287.
28. Grainger, D. W.; Reichert, A.; Ringsdorf, H.; Salesse, C., Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1990, 1023, 365-379.
29. Maloney, K. M.; Grainger, D. W., Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chemistry and Physics of Lipids 1993, 65, 31-42.
30. Carlson, P. A.; Gelb, M. H.; Yager, P., Zero-order interfacial enzymatic degradation of phospholipid tubules. Biophysical Journal 1997, 73, 230-238.
31. Gudmand, M.; Rocha, S.; Hatzakis, N. S.; Peneva, K.; Mullen, K.; Stamou, D.; Uji-I, H.; Hofkens, J.; Bjornholm, T.; Heimburg, T., Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level. Biophysical Journal 2010, 98, 1873-1882.
32. Chibowski, E.; Holysz, L.; Jurak, M., Effect of a lipolytic enzyme on wettability and topography of phospholipid layers deposited on solid support. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 321, 131-136.
33. Balashev, K.; Atanasov, V.; Mitewa, M.; Petrova, S.; Bjornholm, T., Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: an atomic force microscopy (AFM) approach. Biochimica et biophysica acta 2011, 1808, 191-198.
34. Brian, A. A.; McConnell, H. M., Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proceedings of the National Academy of Sciences 1984, 81, 6159-6163.
35. Richter, R. P.; Berat, R.; Brisson, A. R., Formation of Solid-Supported Lipid Bilayers:  An Integrated View. Langmuir : the ACS journal of surfaces and colloids 2006, 22, 3497-3505.
36. Xia, Y.; Qin, D.; Yin, Y., Surface patterning and its application in wetting/dewetting studies. Current opinion in colloid & interface science 2001, 6, 54-64.
37. Padmakar, A.; Kargupta, K.; Sharma, A., Instability and dewetting of evaporating thin water films on partially and completely wettable substrates. The Journal of chemical physics 1999, 110, 1735-1744.
38. Herminghaus, S.; Jacobs, K.; Mecke, K.; Bischof, J.; Fery, A.; Ibn-Elhaj, M.; Schlagowski, S., Spinodal Dewetting in Liquid Crystal and Liquid Metal Films. Science 1998, 282, 916-919.
39. Quere, D., Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71-99.
40. Bico, J.; Thiele, U.; Quere, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206, 41-46.
41. Kargupta, K.; Sharma, A., Dewetting of thin films on periodic physically and chemically patterned surfaces. Langmuir : the ACS journal of surfaces and colloids 2002, 18, 1893-1903.
42. Wang, J.; Zheng, Z.; Li, H.; Huck, W.; Sirringhaus, H., Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nature materials 2004, 3, 171-176.
43. Rehse, N.; Wang, C.; Hund, M.; Geoghegan, M.; Magerle, R.; Krausch, G., Stability of thin polymer films on a corrugated substrate. Eur. Phys. J. E 2001, 4, 69-76.
44. Jokinen, V.; Sainiemi, L.; Franssila, S., Complex droplets on chemically modified silicon nanograss. Advanced Materials 2008, 20, 3453-3456.
45. Kim, M. J.; Song, S.; Kwon, S. J.; Lee, H. H., Trapezoidal structure for residue-free filling and patterning. The Journal of Physical Chemistry C 2007, 111, 1140-1145.
46. Yin, Y.; Lu, Y.; Xia, Y., Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths. Journal of Materials Chemistry 2001, 11, 987-989.
47. Lee, M. J.; Kim, J.; Kim, Y. S., Nanoparticle assembly into a patterned template by controlling the surface wettability. Nanotechnology 2008, 19, 355301.
48. Yu, X.; Wang, Z.; Han, Y., Microlenses fabricated by discontinuous dewetting and soft lithography. Microelectronic Engineering 2008, 85, 1878-1881.
49. You, E.-A.; Ahn, R. W.; Lee, M. H.; Raja, M. R.; O’Halloran, T. V.; Odom, T. W., Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells. Journal of the American Chemical Society 2009, 131, 10863-10865.
50. Walther, F.; Davydovskaya, P.; Zurcher, S.; Kaiser, M.; Herberg, H.; Gigler, A. M.; Stark, R. W., Stability of the hydrophilic behavior of oxygen plasma activated SU-8. Journal of Micromechanics and Microengineering 2007, 17, 524-531.
51. Zhang, J.; Zhou, W.; Chan-Park, M. B.; Conner, S. R., Argon plasma modification of SU-8 for very high aspect ratio and dense copper electroforming. Journal of the Electrochemical Society 2005, 152, C716-C721.
52. Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal 1976, 16, 1055-1069.
53. Veatch, S. L.; Keller, S. L., Seeing spots: complex phase behavior in simple membranes. Biochimica et biophysica acta 2005, 1746, 172-185.
54. Davis, J. H.; Clair, J. J.; Juhasz, J., Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophysical Journal 2009, 96, 521-539.
55. Fagerstam, L. G.; Frostell-Karlsson, A.; Karlsson, R.; Persson, B.; Ronnberg, I., Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. Journal of Chromatography A 1992, 597, 397-410.
56. Komolov, K. E.; Senin, I. I.; Philippov, P. P.; Koch, K.-W., Surface plasmon resonance study of G protein/receptor coupling in a lipid bilayer-free system. Analytical chemistry 2006, 78, 1228-1234.
57. Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G. M., A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical Chemistry 1999, 71, 777-790.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57652-
dc.description.abstract支撐式脂雙層膜平台具有可以保存生物分子的結構,以及允許生物分子能夠在平台上自由移動的特性,因此被認為可與各式表面分析技術結合,來發展成絕佳的生物檢測平台。然而,傳統的支撐式磷脂雙層膜在暴露於空氣-水界面後會受到破壞且失去其結構的完整性,限制了其廣泛的應用。在本論文中,有別於以往文獻所用之化學修飾方法,我們創建了獨特的物理障礙,以發展不受空氣-水界面破壞的磷脂雙層膜平台。這些物理障礙能夠攔截水層於障礙間的脂雙層膜上以避免空氣-水的界面張力直接作用於雙層膜而造成破壞。第一部份的研究中,我們使用磷脂酶A2在膜上水解反應生成的障礙來做為系統中的物理障礙。由於這些物理障礙具有抗洗滌劑與強力貼附在基材表面的性質,允許我們在利用洗滌劑清洗反應完的磷脂酶和脂質後,能夠將欲組成的脂雙層膜形成於障礙之間。在螢光顯微鏡下,我們直接觀察到空氣-水界面通過後,水層被截於障礙間並保護脂質膜受破壞的情形。螢光漂白回復測試結果也驗證出,受物理障礙保護的雙層膜在通過空氣-水界面後又回到水溶液環境下,仍保有原本不受影響的流動性。在第二部分的研究中,我們使用光顯影製程來形成光阻物理障礙,以避免脂雙層膜在生物檢測之試劑交換時受到空氣氣泡的破壞。藉由改變物理障礙的間距和微流道系統中的操作流速,我們進一步發現當空氣-水界面移動速度增加時,需要更短的物理障礙間距才能達到良好的保護雙層膜效果。螢光漂白回復測試方法也同樣顯示出,受光阻物理障礙保護的雙層膜在回到水溶液環境下仍保有與通過空氣-水界面之前相當的流動性。另外,鏈霉抗生物素蛋白與生物素脂質分子間鍵結能力測試,也顯示出被物理障礙保護的雙層膜上的受體能和配體反應的能力亦不受空氣-水界面而影響。本研究顯示我們能成功使用物理障礙的方法以避免脂雙層膜被空氣-水界面破壞,進而保存其完整性與流動性。此法突破了先前相關技術均會降低雙層膜流動性及造成空間障礙的問題,更進一步提升本技術在生物感測平台上的應用潛力。zh_TW
dc.description.abstractSupported lipid bilayers (SLBs) have been thought as desirable platforms for various biosensing applications. The bilayer structure allows the embedded membrane species to maintain their native orientation, and the two dimensional fluidity is crucial for numerous biomolecular interactions to occur. However, the lipid bilayers easily delaminate and lose their natural structure after being exposed to air-water interface. Here, for the first time, we demonstrated using physical confinement instead of chemical modifications to create air-stable membranes. The physical confinement could trap some water above the lipid bilayers to prevent the air-water interface from directly contacting and peeling the lipid bilayers. In the first part of this thesis, the physical confinement was generated by the obstacle network induced by a peripheral enzyme, phospholipase A2 (PLA2). The enzyme and reacted lipids can be washed away from the obstacle network which is detergent-resistance and strongly bonded to the solid support. With the property, the obstacle framework on the solid support was reusable and lipid bilayers with the desired composition can be refilled and formed in the region confined by the obstacle framework. Fluorescence recovery after photobleaching (FRAP) results showed that the diffusivities of the SLBs before drying and after rehydration are comparable, indicating the air-stability of the physically confined membrane. In addition, we observed that the obstacles could trap a thin layer of water after the air-water interface passed through the SLB. In the second part of this thesis, we used patterned photoresist obstacle grating to protect SLBs from destroying by an air bubble. We varied the patterned obstacle distances and found that the grating geometry criterion was more restricted when the air-water interface moving speed was faster. The FRAP measurement from the unaffected confined SLBs showed that the fluidity remained unchanged after an air-bubble treatment. In addition, the interaction assay result from the streptavidin and biotinylated lipid in the confined SLBs suggested that receptors on the SLBs remained the interaction ability after air-bubble treatment. These results showed that the SLB platform physically confined by the obstacle grating structure can preserve not only the membrane fluidity but also the accessibility to the outside environment. Integrating with a device for reagent transport and exchange, this platform has a great potential to be applied with surface analytical tools to create more robust in-vitro cell membrane related bioassays in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:56:08Z (GMT). No. of bitstreams: 1
ntu-103-R01524003-1.pdf: 2437929 bytes, checksum: db1bddcca66006e39fcdbc4e1fe8b67c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1. Introduction 1
2. Principles of Methods 5
2.1. Supported Lipid Bilayers 5
2.2. Water retention by physical confinement 10
3. Materials and Methods 16
3.1. Materials 16
3.2. Apparatus 17
3.3. Lipid Preparation 18
3.4. Sample Fabrication for SLB Confined by PLA2 Obstacle Network 19
3.4.1. Preparation of Obstacles Induced by PLA2 19
3.4.2. Preparation of Refilled SLBs in the Region Confined by Obstacle Network 20
3.5. Identification of the domain network topography by Atomic Force Microscopy 20
3.6. Dehydration and Rehydration of the SLB inside a PDMS Well 20
3.7. Sample Fabrication for SLB on the Substrate with Photoresist Grating Structure inside a Microchannel Device 21
3.7.1. Preparation of Substrates with Photoresist Grating Structures by Photolithography 21
3.7.2. Polydimethylsiloxane Microchannel Slab Fabrication 22
3.7.3. Formation of SLBs on the Substrate with Photoresist Grating Structure inside a Microchannel Device 22
3.8. Dehydration and Rehydration of the SLB by Introducing an Air-bubble Into the Microchannel 23
3.9. Fluorescence Microscopy Images and Fluorescence Recovery after Photobleaching (FRAP) 23
3.10. Fluorescence Recovery after Photobleaching algorism and MATLAB code 24
4. Results 34
4.1. Air-stable SLB by Physical Confinement Induced by PLA2 34
4.1.1. Formation of Obstacle Network Induced by PLA2 34
4.1.2. Cleaning Residuals and Refilling New Lipid Membranes in the Region Confined by the Obstacle Network. 35
4.1.3. Using Fluorescence Microscopy to Track Air-water Interface Moving Front 37
4.1.4. FRAP to Examine the Membrane Integrity before Drying, after Drying, and after Rehydration 40
4.2. Using Physical Confinement by Patterned Grating Structure to Develop Lipid Bilayer Platforms Insensitive to an Air-Bubble 43
4.2.1. Examining the Integrity of SLB Confined in the Obstacle Grating before an Air-Bubble, under an Air-bubble, and after Rehydration 43
4.2.2. Percentages of the unaffected SLBs confined in gratings with various obstacle distances after an air-bubble treatment. 44
4.2.3. FRAP to Measure the Membrane Fluidity before an air-bubble, under an air-bubble, and after rehydration 46
4.2.4. Streptavidin-Biotinylated Lipid Interactions Remained in the Developed Platform after an Air-Bubble Treatment. 48
5. Discussions 52
5.1. Creating Air-stable SLB by Physical Confinement Induced by PLA2 52
5.1.1. Diffusivity Coefficient of the SLB before Removing PLA2 52
5.1.2. Stability of the Bilayer Structure in Air 53
5.1.3. Possible Air-Stable Mechanism Due to the Physical Confinement 56
5.1.4. Importance of Obstacle Network Density to the Membrane Air-stability 58
5.2. Using Physical Confinement by Patterned Grating Structure to Develop Lipid Bilayer Platforms Insensitive to an Air-Bubble 60
5.2.1. Patterned Photoresist Grating to Prevent the Air-Water Interface from Directly Contacting the SLB 60
5.2.2. Fluidity and Outside Environment Accessibility Compared to Previously Developed Air-Stable Methods 63
6. Conclusions 66
7. References 68
dc.language.isozh-TW
dc.subject脂雙層膜zh_TW
dc.subject磷脂?A2zh_TW
dc.subject物理障礙zh_TW
dc.subjectLipid Bilayersen
dc.subjectAir-stableen
dc.subjectPhysical confinementen
dc.subjectPhospholipase A2en
dc.title使用物理障礙發展不受空氣-水界面破壞之磷脂雙層膜平台zh_TW
dc.titleUsing Physical Confinement to Develop Lipid Bilayer Platforms Insensitive to Air-water Interfaceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝之真(Chih-Chen Hsieh),張瑛芝(Ying-Chih Chang)
dc.subject.keyword脂雙層膜,磷脂?A2,物理障礙,zh_TW
dc.subject.keywordLipid Bilayers,Air-stable,Physical confinement,Phospholipase A2,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2014-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved