Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊永斌(Yeong-Bin Yang)
dc.contributor.authorChong-Kai Chiuen
dc.contributor.author邱重凱zh_TW
dc.date.accessioned2021-06-16T06:54:56Z-
dc.date.available2016-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citationBettess, P., and Zienkiewicz, O. C. (1977), “Diffraction and refraction of surface waves using finite and infinite element,” International Journal for Numerical Methods in Engineering, Vol. 11, 1271-1290.
Cattaneo, C. (1958), “A Form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Compte Rendus, Vol. 247,431-433.
Chester, M. (1963), “Second sound in solid,” Physical Review, Vol. 131, 2103-2016.
Hung, H. H., and Yang, Y. B. (2001), “Elastic waves in visco-elastic half-space
generated by various vehicle loads,” Soil Dynamics and Earthquake Engineering, Vol.
21(1), 1–17.
Landau, L. (1941), “The theory of superfluidity of helium,” Journal of Physics, Vol. 5,71.
Lord, H.W., and Shulman, Y. (1967), “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, Vol. 15, 299-306
Peshkov, V. (1944), “Second Sound' in Helium II, ” J. Phys, Vol.8, 381 .
Qiu, T. Q., and Tien, C. L. (1992), “Short-Pulse Laser Heating on Metals,” International Journal of Heat and Mass Transfer, Vol. 42, 719-726.
Roetzel, W., Putra, N., Das, S.K. (2003), “Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure,” International Journal of Thermal Sciences, Vol. 42, 541-552
Tisza, L. (1938), “Transport Phenomena in Helium II,” Nature, Vol. 141, 913.
Tzou, D. Y. (1992), “On the wave theory in heat conduction,” ASME J. Heat Transfer, Vol. 116, 526-535.
Tzou, D. Y. (1995), “A unified field approach for heat conduction from micro- to macro-scales,” ASME Journal of Heat Transfer, Vol. 117, 8-16.
Ungless, R. F. (1973), “An infinite finite element, ” M.A.Sc. Thesis, University of British Columbia.
Vernotte, P. (1958), “The true heat equation,” Compte Rendus, Vol. 247, 2103.
Yang Y. B. , Shyh Rong Kuo and Hsiao Hui Hung(1996), “Frequency independent
infinite elements for analyzing semi-infinite problems,” International Journal for
Numerical Methods in Engineering, Vol. 39, 3553-3569.
Yang, Y. B., and Hung, H. H. (2001). “A 2.5D finite/infinite element approach for modeling visco-elastic bodies subjected to moving loads,” Int. J. Numer. Methods Eng., 51(11): 1317–1336.
Yu, N., Imatani, S. T., and Inoue, T (2004), “Characteristics of Temperature Field due to Pulsed Heat Input Calculated by Non-Fourier Heat Conduction Hypothesis,” JSME
International Journal. Series A, Vol. 47(4), 574-580
Zhao, C., and Valliappan, S. (1993), “Mapped transient infinite elements for heattransferproblemsin infinite media,” Computer Methods in Applied Mechanics and Engineering, Vol. 108, 119-131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57629-
dc.description.abstract本研究旨在分析非傅立葉熱傳問題,對於一般情況下的熱傳問題,使用傳統的傅立葉熱傳理論,即可達到良好的結果。然而,當涉及到極端條件的熱傳問題時,如溫度急遽變化或極高(低)溫度等情形,傅立葉熱傳無法精確模擬,是以出現了有別於傳統的非傅立葉熱傳理論。在傅立葉熱傳中,熱的傳播速度為無限大,不符合實際物理情形;在非傅立葉熱傳中,因考慮熱的波動特性,熱係以有限的速度傳遞。
本文援用了由Yang 和Hung (2001)所提出的土壤與結構互制之分析方法,將之用於熱傳分析中。首先介紹非傅立葉熱傳的基本特性,並透過傅立葉轉換推導2維解析解,由此探討各物理參數對溫度反應的影響。數值解的部分採用有限/無限元素混和分析法,利用動態無限元素模擬半無限域。隨後分析單一移動熱荷載作用於半無限域之問題,將3維問題以2.5維方法作分析,討論不考慮自振頻率荷載及考慮自振頻率荷載兩種情況,針對兩者的差異修正無限元素參數,最後經由數值解與解析解的結果,吾人作了一些結論與討論。
zh_TW
dc.description.abstractHeat transfer analysis based on Fourier’s law has often been adopted to analyze the general heat conduction problem. However, it was found that the Fourier model fails to predict the temperature under some extreme conditions, such as rapid changes in temperature or extremely high or low temperatures. The Fourier heat equation implies that the propagation speed is infinite, while the non-Fourier heat equation is governed by the hyperbolic equation, which implies the propagation speed of heat waves is finite. Therefore, it was suggested that the traditional Fourier heat equation should be replaced with the non-Fourier heat equation to account for the finite thermal propagation speed.
In this study, the analytical solution of the governing equation is solved by the Fourier transform. The effects of some physical parameters on the temperature response are presented. The 2.5D finite/infinite element procedure proposed by Yang and Hung (2001) is adopted to deal with the non-Fourier heat conduction problems. The unbounded properties of the semi-infinite domain are simulated by infinite elements. The responses of a semi-infinite field subjected to a moving heat load, both with and without a self-oscillation frequency, are investigated. Finally, by comparing the results obtained with the corresponding analytical solutions, some conclusions are made along with discussions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:54:56Z (GMT). No. of bitstreams: 1
ntu-103-R01521224-1.pdf: 8711259 bytes, checksum: 3ec26650a3ab76efe4b11fc81707504d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝………………………………………………………………………...……… I
摘要………………………………………………………………………...…….. III
Abstract…..….…….……………………………………………………………... V
目錄………………………………………………………………………………. VI
圖目錄……………………………………………………………………………. IX
第一章 導論……………………………………………………………………... 1
1.1研究背景與動機……………………………………………….……...….. 1
1.2論文架構…………………………………………………….……………. 2
第二章 非傅立葉熱傳之基本理論……………………………………………... 3
2. 1熱傳機制………………………………………………….………………. 3
2.2非傅立葉熱傳介紹………………………………………….……………. 4
2.2.1簡介……………………………………………………….………… 4
2.2.2控制方程…………………………………………………….……… 5
2.3文獻回顧………………………………………………………...…..……. 8
第三章 非傅立葉熱傳之解析解……………………………....……...…….…. 10
3.1前言…………………………………………………………..….…….… 10
3.2邊界條件………………………………………………..……….………. 11
3.3無因次式……………………………………...……………...……....….. 13
3.3.1傅立葉熱傳無因次式…………..……………..…..……....………. 14
3.3.2非傅立葉熱傳無因次式…..………………..…………..…………. 14
3.3.3小結………………………..………………..……….…..…...……. 15
3.4二維解析解……………………………………………………......…….. 16
第四章 非傅立葉熱傳之有限元素法…………………………….…….……... 27
4.1導論………………………………………………….………….....…….. 27
4.2有限元素方程推導………………………………………………….…... 27
4.3二維例題分析─有限區域…………...……..……….…………....…...... 32
4.4二維例題分析─半無限域……………………………..…….…...…….. 39
4.4.1混和分析法…………………………………………….....….……. 40
4.4.2靜態無限元素……………………………………….…....….……. 41
4.4.3動態無限元素……………………………..………....…..………... 49
第五章 2.5維非傅立葉熱傳……………………………………...…...………. 59
5.1導論…………………………………………………………...………….. 59
5.2 2.5維解析解………………………….…………….………...………….. 59
5.3 2.5維有限元素推導………………………………..…………...……….. 80
5.4 2.5維例題分析─有限區域………………………………...…………… 84
5.5 2.5維例題分析─半無限域.……………...……..……………...……….. 91
5.6小結…..………………………………………………………...……….. 103
第六章 結論與未來展望……………………………………………..…….… 104
6.1結論……………………………………………………………..…..….. 104
6.2未來與展望………………………………………...……..………...….. 105
參考文獻..…………………………………………………………..…….….…… 106
dc.language.isozh-TW
dc.subject自振頻率zh_TW
dc.subject無限元素zh_TW
dc.subject非傅立葉熱傳zh_TW
dc.subject傅立葉熱傳zh_TW
dc.subject有限元素分析zh_TW
dc.subject2.5維有限/無限元素混和分析法zh_TW
dc.subject2.5D analysisen
dc.subjectFourier heat conductionen
dc.subjectnon-Fourier heat conductionen
dc.subjectinfinite elementen
dc.subjectself-oscillation frequencyen
dc.subjectfinite element analysisen
dc.title2.5D無限元素非傅立葉熱傳法則模擬zh_TW
dc.titleA 2.5D infinite element approach for modeling non-Fourier
heat conduction subjected to moving heat sources
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王寶璽(Pao-Hsii Wang),洪曉慧(Hsiao-Hui Hung),郭世榮(Shyh-Rong Kuo)
dc.subject.keyword有限元素分析,傅立葉熱傳,非傅立葉熱傳,無限元素,自振頻率,2.5維有限/無限元素混和分析法,zh_TW
dc.subject.keywordfinite element analysis,Fourier heat conduction,non-Fourier heat conduction,infinite element,self-oscillation frequency,2.5D analysis,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2014-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved