請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57625完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊瑋(Jiunn-Wei Chen) | |
| dc.contributor.author | Chih-Liang Wu | en |
| dc.contributor.author | 吳致樑 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:54:44Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-20 | |
| dc.identifier.citation | [1] K. Nakamura and S. Petcov, Review of Particle Physics, Phys. Rev. D 86, 177 (2012), and references therein.
[2] G P. Vogel and A. Piepke, Review of Particle Physics, Phys. Rev. D 86, 622 (2012), and references therein. [3] S. T. Lin et al., Phys. Rev. D 79, 061101 (2009). [4] H. B. Li et al., Phys. Rev. Lett. 110, 261301 (2013). [5] W. Zhao et al., Phys. Rev. D 88, 052004 (2013). [6] R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012). [7] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, Phys. Rev. Lett. 109, 021301 (2012). [8] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109 021301 (2012). [9] K.-N. Huang, H.-C. Chi, and H.-S. Chou, Chin. J. Phys. 33, 565 (1995). [10] J. P. Desclaux, Comp. Phys. Comm. 9, 31 (1975). [11] L.A. Radicati, B. Touschek, Nuovo Cimento 6 (1957) 1693. [12] M. B. Voloshin, Phys. Rev. Lett. 105, 201801 (2010), erratum: ibid. 106, 059901 (2011). [13] K. A. Kouzakov and A. I. Studenikin, Phys. Lett. B 696, 252 (2011). [14] K. A. Kouzakov, A. I. Studenikin, and M. B. Voloshin, Phys. Rev. D 83, 113001 (2011). [15] C. F. von Weizsacker, Z. Phys. 88, 612 (1934). [16] E. J. Williams, Phys. Rev. 45, 729 (1934). [17] J.-W. Chen, C.-P. Liu, C.-F. Liu, and C.-L. Wu, Phys. Rev. D 88, 033006 (2013). [18] H. T. Wong, H.-B. Li, and S.-T. Lin, Phys. Rev. Lett. 105, 061801 (2010). [19] A. Nordsieck, Phys. Rev. 93, 785 (1954). [20] A. R. Holt, J. Phys. B 2, 1209 (1969). [21] D. Belkić, J. Phys. B 14, 1907 (1981). [22] M. S. Gravielle and J. E. Miraglia, Comp. Phys. Comm. 69, 53 (1992). [23] K-N. Huang and W. R. Johnson, Phys. Rev. A 25,634 (1982) [24] W. R. Johnson and K-N. Huang, Phys. Rev. Lett. 48, 315 (1982). [25] K-N. Huang, Phys. Rev. A 26, 734 (1982). [26] K-N. Huang, H-C. Chi and H-S. Chou, Chin. J. Phys. 33, 565 (1995). [27] H-S. Chou and K-N. Huang, Chin. J. Phys. 35, 35 (1997); L-R. Wang, H-C. Chi and K-N. Huang, Phys. Rev. Lett. 83, 702 (1999); L-R. Wang, J-T. Hsiao and K-N. Huang, J. Phys. B 39, 217 (2006); J-T. Hsiao, L- R. Wang, H-L. Sun, S-F. Lin, C-L. Lu and K-N. Huang, Phys. Rev. A 78, 013411 (2008); J-T. Hsiao, H-L. Sun, S-F. Lin and K-N. Huang, J. Phys. 185, 012015 (2009); Ju-Tang Hsiao, Hsiao-Ling Sun, Sheng-Fang Lin, and Keh-Ning Huang, J. At. Mol. Opt. Phy. 2011,1 (2011) [28] J. P. Desclaux, Comput. Phys. Commun. 9,31 (1975). [29] 4.B. Henke, E. Gullikson, and J. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993). [30] B. Kayser, Phys. Rev. extbf{D 26}, 1662 (1982); J.F. Nieves, Phys. Rev. D 26, 3152 (1982). [31] N.F. Bell et al., Phys. Rev. Lett. 95, 151802 (2005); N.F. Bell et al., Phys. Lett. B 642, 377 (2006). [32] B.W. Lee and R.E. Shrock, Phys. Rev. D 16, 1444 (1977); W. Marciano and A.I. Sanda, Phys. Lett. B 67, 303 (1977); K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980). [33] R. Shrock, Phys. Rev. D 9, 743 (1974); J. Kim, Phys. Rev. D 14, 3000 (1976); M.A.B. Beg, W.J. Marciano,and M. Ruderman, Phys. Rev. D 17, 1395 (1977); M.Fukugita and T. Yanagida, Phys. Rev. Lett. 58, 1807 (1987); S.M. Barr, E.M. Freire, and A. Zee, Phys. Rev. Lett. 65, 2626 (1990). [34] K. A. Kouzkov and A. I. Studenikin, (2014), arXiv:1406.4999 [hep-ph]. [35] A. Beda et al., Adv. High Energy Phys. 2012, 350150 (2012); A. G. Beda et al., Phys. Part. Nucl. Lett. 10, 139 (2013). [36] H. B. Li et al., Phys. Rev. Lett. 90, 131802 (2003); H. T. Wong et al., Phys. Rev. D 75, 012001 (2007). [37] J.W. Chen et al., Phys. Lett. B 731, 159 (2014). [38] O. Klein, Nature 118, 516 (1926).; P.A.M. Dirac, Proc. R. Soc. A133, 60 (1931); J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); H. Georgi and S.L. Glashow, Phys. Rev. Lett 32, 438 (1974). [39] R. Foot et al., Mod. Phys. Lett. A 5, 2721 (1990); R. Foot, H. Lew, and R.R. Volkas, J. Phys. G 19, 361 (1993). [40] K.S.`Babu and R.N. Mohapatra, Phys. Rev. Lett. 63, 938 (1989); Phys. Rev. D 41, 271 (1990). [41] B. Holdom, Phys. Lett. B 166, 196 (1986); R. Foot, H. Lew and R.R. Volkas, Phys. Lett. B 272, 67 (1991); I. Antoniadis and K. Benakli, Phys. Lett. 295, 219 (1992); A.Yu. Ignatiev and G.C. Joshi, Phys. lett. B 38, 216 (1996). [42] G. Raffelt, Phys. Rep. 320, 319 (1999). [43] M. Marinelli and G. Morpurgo, Phys. Lett. B 137, 439 (1984); J. Baumann et al., Phys. Rev. D 37, 3107 (1988). [44] S.N. Gninenko, N.V. Krasnikov, and A. Rubbia, Phys. Rev. D 75, 075014 (2005). [45] A. Studenikin, arXiv: 1302.1168 (2013). [46] H.B. Li et al., Phys. Rev. Lett. 90, 131802 (2003); H.T. Wong et al., Phys. Rev. D 75, 012001 (2007). [47] A.G. Beda et al., Adv. High Energy Phys. 2012, 350150 (2012). [48] J.W. Chen et al., arXiv: 1405.7168 (2013).. [49] Bardeen, W. A., R. Gastmans, and B. Lautrup (1972), Nucl. Phys, B46, 319. [50] Lee, B. W., and R. E. Shrock (1977), Phys. Rev. D16,1444. [51] Lucio, J., A. Rosado, and A. Zepeda (1984), Phys. Rev. D29, 1539. [52] Bernabeu, J., L. G. Cabral-Rosetti, J. Paavassiliou, and J. Vidal (2000), Phys. Rev. D62, 113012. [53] M.B. Voloshin, Phys. Rev. Lett 105 (2010) 201801; K. A. Kouzakov and A. I. Studenikin, Phys. Lett. B 696, 252 (2011). [54] Barranco, J., O. G. Miranda, and T. I. Rashba (2008), Phys. Lett. B 662 ,431. [55] Muhammed Deniz et al (2012) J. Phys.: Conf. Ser. 375 042044 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57625 | - |
| dc.description.abstract | 隨著探測器技術的發展,原子游離已經被視為可能的管道以尋找微中子電磁性質以及暗物質。我們使用一個具有解析解的簡單模型──氫原子,考慮其透過不同的交互作用後被游離,將微分截面的結果與數種近似法比較,來尋找原子結構對於這些過程的影響以及這些近似法的適用性。在實驗上,其中一個探測方法是以鍺原子當作標靶,測量被游離電子產生的訊號,我們透過第一原理計算的理論: 多重組態相對論性混相理論與應用,來處理鍺原子游離的過程,由此得到的結果與氫原子得到的結論相互驗證並發現有許多相似之處。本研究主要的目標為提供比以前的近似法更為可信而的計算,藉由國聖核電廠產生微中子的能譜以及探測器偵測的結果,得到對於微中子電磁性質的上限。 | zh_TW |
| dc.description.abstract | With the advent of detectors with sub-keV sensitivities, atomic ionization of detectors has been identified as a promising avenue to probe possible neutrino electromagnetic properties and light dark matter. We begin with the process involving ionization of hydrogen, a few-body toy model that has analytic result, by different interactions and compare the result with several approximations often used in atomic physics in oder to study possible influence of atomic structure and the applicabilities of various approximations from this simple case. Next, with the use of an ab initio calculation, multiconfiguration relativistic random-phase approximation theory (MCRRPA), we are able to study practical detectors like germanium (Ge). The general features being found from hydrogen is useful for cases where Ge detectors are considered. The main goal is to provide more reliable cross section results with reasonable theoretical error estimation than the conventionally used formula. Based on the spectrum from the Kuo-Shen Nuclear Power Station, constraints of neutrino electromagnetic properties are obtained. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:54:44Z (GMT). No. of bitstreams: 1 ntu-103-R01222016-1.pdf: 1438801 bytes, checksum: 3496050812602985e88bf7b7869feef5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Contents iii List of Figures v Chapter 1 Introduction 1 Chapter 2 General Formalism 4 2.1 Differential Cross Sections 7 2.2 Free Electron Approximation 9 2.3 Equivalent Photon Approximation 11 Chapter 3 Toy Model - Hydrogen 13 3.1 Neutrinos 14 3.2 Dark Matter 14 Chapter 4 Ab Initio Description of Germanium 18 4.1 The MCRRPA Theory 18 4.2 Atomic Structure of Germanium by MCDF 24 4.3 Photoabsorption of Germanium by MCRRPA 25 Chapter 5 Neutrino-Impact Ge Atomic Ionization 30 5.1 Weak Interaction 31 5.2 Magnetic and Electric Dipole Moments 33 5.3 Electric Charge 34 5.4 Charge Radius and Anapole Moments 37 Chapter 6 Conclusion 39 Bibliography 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自由電子近似 | zh_TW |
| dc.subject | 相對論性混相理論 | zh_TW |
| dc.subject | 原子游離 | zh_TW |
| dc.subject | 鍺原子 | zh_TW |
| dc.subject | 暗物質 | zh_TW |
| dc.subject | 等效光子近似 | zh_TW |
| dc.subject | 微中子 | zh_TW |
| dc.subject | dark matter | en |
| dc.subject | equivalent photon approximation | en |
| dc.subject | free electron approximation | en |
| dc.subject | random phase approximation | en |
| dc.subject | ionization | en |
| dc.subject | germanium | en |
| dc.subject | neutrino | en |
| dc.title | 利用原子游離以尋找微中子電磁性質和暗物質 | zh_TW |
| dc.title | Detection of neutrino electromagnetic properties and dark matter via atomic ionization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉承邦(Cheng-Pang Liu),紀信昌(Hsin-Chang Chi),王子敬(Henry Tsz-king Wong) | |
| dc.subject.keyword | 微中子,暗物質,鍺原子,原子游離,相對論性混相理論,自由電子近似,等效光子近似, | zh_TW |
| dc.subject.keyword | neutrino,dark matter,germanium,ionization,random phase approximation,free electron approximation,equivalent photon approximation, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
