Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊瑋(Jiunn-Wei Chen)
dc.contributor.authorChih-Liang Wuen
dc.contributor.author吳致樑zh_TW
dc.date.accessioned2021-06-16T06:54:44Z-
dc.date.available2014-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-20
dc.identifier.citation[1] K. Nakamura and S. Petcov, Review of Particle Physics, Phys. Rev. D 86, 177 (2012), and references therein.
[2] G P. Vogel and A. Piepke, Review of Particle Physics, Phys. Rev. D 86, 622 (2012), and references therein.
[3] S. T. Lin et al., Phys. Rev. D 79, 061101 (2009).
[4] H. B. Li et al., Phys. Rev. Lett. 110, 261301 (2013).
[5] W. Zhao et al., Phys. Rev. D 88, 052004 (2013).
[6] R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012).
[7] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, Phys. Rev. Lett. 109, 021301 (2012).
[8] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, Phys. Rev. Lett. 109 021301 (2012).
[9] K.-N. Huang, H.-C. Chi, and H.-S. Chou, Chin. J. Phys. 33, 565 (1995).
[10] J. P. Desclaux, Comp. Phys. Comm. 9, 31 (1975).
[11] L.A. Radicati, B. Touschek, Nuovo Cimento 6 (1957) 1693.
[12] M. B. Voloshin, Phys. Rev. Lett. 105, 201801 (2010), erratum: ibid. 106, 059901 (2011).
[13] K. A. Kouzakov and A. I. Studenikin, Phys. Lett. B 696, 252 (2011).
[14] K. A. Kouzakov, A. I. Studenikin, and M. B. Voloshin, Phys. Rev. D 83, 113001 (2011).
[15] C. F. von Weizsacker, Z. Phys. 88, 612 (1934).
[16] E. J. Williams, Phys. Rev. 45, 729 (1934).
[17] J.-W. Chen, C.-P. Liu, C.-F. Liu, and C.-L. Wu, Phys. Rev. D 88, 033006 (2013).
[18] H. T. Wong, H.-B. Li, and S.-T. Lin, Phys. Rev. Lett. 105, 061801 (2010).
[19] A. Nordsieck, Phys. Rev. 93, 785 (1954).
[20] A. R. Holt, J. Phys. B 2, 1209 (1969).
[21] D. Belkić, J. Phys. B 14, 1907 (1981).
[22] M. S. Gravielle and J. E. Miraglia, Comp. Phys. Comm. 69, 53 (1992).
[23] K-N. Huang and W. R. Johnson, Phys. Rev. A 25,634 (1982)
[24] W. R. Johnson and K-N. Huang, Phys. Rev. Lett. 48, 315 (1982).
[25] K-N. Huang, Phys. Rev. A 26, 734 (1982).
[26] K-N. Huang, H-C. Chi and H-S. Chou, Chin. J. Phys. 33, 565 (1995).
[27] H-S. Chou and K-N. Huang, Chin. J. Phys. 35, 35 (1997); L-R. Wang, H-C. Chi and K-N. Huang, Phys. Rev. Lett. 83, 702 (1999); L-R. Wang, J-T. Hsiao and K-N. Huang, J. Phys. B 39, 217 (2006); J-T. Hsiao, L- R. Wang, H-L. Sun, S-F. Lin, C-L. Lu and K-N. Huang, Phys. Rev. A 78, 013411 (2008); J-T. Hsiao, H-L. Sun, S-F. Lin and K-N. Huang, J. Phys. 185, 012015 (2009); Ju-Tang Hsiao, Hsiao-Ling Sun, Sheng-Fang Lin, and Keh-Ning Huang, J. At. Mol. Opt. Phy. 2011,1 (2011)
[28] J. P. Desclaux, Comput. Phys. Commun. 9,31 (1975).
[29] 4.B. Henke, E. Gullikson, and J. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993).
[30] B. Kayser, Phys. Rev. extbf{D 26}, 1662 (1982); J.F. Nieves, Phys. Rev. D 26, 3152 (1982).
[31] N.F. Bell et al., Phys. Rev. Lett. 95, 151802 (2005); N.F. Bell et al., Phys. Lett. B 642, 377 (2006).
[32] B.W. Lee and R.E. Shrock, Phys. Rev. D 16, 1444 (1977); W. Marciano and A.I. Sanda, Phys. Lett. B 67, 303 (1977); K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
[33] R. Shrock, Phys. Rev. D 9, 743 (1974); J. Kim, Phys. Rev. D 14, 3000 (1976); M.A.B. Beg, W.J. Marciano,and M. Ruderman, Phys. Rev. D 17, 1395 (1977); M.Fukugita and T. Yanagida, Phys. Rev. Lett. 58, 1807 (1987); S.M. Barr, E.M. Freire, and A. Zee, Phys. Rev. Lett. 65, 2626 (1990).
[34] K. A. Kouzkov and A. I. Studenikin, (2014), arXiv:1406.4999 [hep-ph].
[35] A. Beda et al., Adv. High Energy Phys. 2012, 350150 (2012); A. G. Beda et al., Phys. Part. Nucl. Lett. 10, 139 (2013).
[36] H. B. Li et al., Phys. Rev. Lett. 90, 131802 (2003); H. T. Wong et al., Phys. Rev. D 75, 012001 (2007).
[37] J.W. Chen et al., Phys. Lett. B 731, 159 (2014).
[38] O. Klein, Nature 118, 516 (1926).; P.A.M. Dirac, Proc. R. Soc. A133, 60 (1931); J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); H. Georgi and S.L. Glashow, Phys. Rev. Lett 32, 438 (1974).
[39] R. Foot et al., Mod. Phys. Lett. A 5, 2721 (1990); R. Foot, H. Lew, and R.R. Volkas, J. Phys. G 19, 361 (1993).
[40] K.S.`Babu and R.N. Mohapatra, Phys. Rev. Lett. 63, 938 (1989); Phys. Rev. D 41, 271 (1990).
[41] B. Holdom, Phys. Lett. B 166, 196 (1986); R. Foot, H. Lew and R.R. Volkas, Phys. Lett. B 272, 67 (1991); I. Antoniadis and K. Benakli, Phys. Lett. 295, 219 (1992); A.Yu. Ignatiev and G.C. Joshi, Phys. lett. B 38, 216 (1996).
[42] G. Raffelt, Phys. Rep. 320, 319 (1999).
[43] M. Marinelli and G. Morpurgo, Phys. Lett. B 137, 439 (1984); J. Baumann et al., Phys. Rev. D 37, 3107 (1988).
[44] S.N. Gninenko, N.V. Krasnikov, and A. Rubbia, Phys. Rev. D 75, 075014 (2005).
[45] A. Studenikin, arXiv: 1302.1168 (2013).
[46] H.B. Li et al., Phys. Rev. Lett. 90, 131802 (2003); H.T. Wong et al., Phys. Rev. D 75, 012001 (2007).
[47] A.G. Beda et al., Adv. High Energy Phys. 2012, 350150 (2012).
[48] J.W. Chen et al., arXiv: 1405.7168 (2013)..
[49] Bardeen, W. A., R. Gastmans, and B. Lautrup (1972), Nucl. Phys, B46, 319.
[50] Lee, B. W., and R. E. Shrock (1977), Phys. Rev. D16,1444.
[51] Lucio, J., A. Rosado, and A. Zepeda (1984), Phys. Rev. D29, 1539.
[52] Bernabeu, J., L. G. Cabral-Rosetti, J. Paavassiliou, and J. Vidal (2000), Phys. Rev. D62, 113012.
[53] M.B. Voloshin, Phys. Rev. Lett 105 (2010) 201801; K. A. Kouzakov and A. I. Studenikin, Phys. Lett. B 696, 252 (2011).
[54] Barranco, J., O. G. Miranda, and T. I. Rashba (2008), Phys. Lett. B 662 ,431.
[55] Muhammed Deniz et al (2012) J. Phys.: Conf. Ser. 375 042044
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57625-
dc.description.abstract隨著探測器技術的發展,原子游離已經被視為可能的管道以尋找微中子電磁性質以及暗物質。我們使用一個具有解析解的簡單模型──氫原子,考慮其透過不同的交互作用後被游離,將微分截面的結果與數種近似法比較,來尋找原子結構對於這些過程的影響以及這些近似法的適用性。在實驗上,其中一個探測方法是以鍺原子當作標靶,測量被游離電子產生的訊號,我們透過第一原理計算的理論: 多重組態相對論性混相理論與應用,來處理鍺原子游離的過程,由此得到的結果與氫原子得到的結論相互驗證並發現有許多相似之處。本研究主要的目標為提供比以前的近似法更為可信而的計算,藉由國聖核電廠產生微中子的能譜以及探測器偵測的結果,得到對於微中子電磁性質的上限。zh_TW
dc.description.abstractWith the advent of detectors with sub-keV sensitivities, atomic ionization of detectors has been identified as a promising avenue to probe possible neutrino electromagnetic properties and light dark matter. We begin with the process involving ionization of hydrogen, a few-body toy model that has analytic result, by different interactions and compare the result with several approximations often used in atomic physics in oder to study possible influence of atomic structure and the applicabilities of various approximations from this simple case. Next, with the use of an ab initio calculation, multiconfiguration relativistic random-phase approximation theory (MCRRPA), we are able to study practical detectors like germanium (Ge). The general features being found from hydrogen is useful for cases where Ge detectors are considered. The main goal is to provide more reliable cross section results with reasonable theoretical error estimation than the conventionally used formula. Based on the spectrum from the Kuo-Shen Nuclear Power Station, constraints of neutrino electromagnetic properties are obtained.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:54:44Z (GMT). No. of bitstreams: 1
ntu-103-R01222016-1.pdf: 1438801 bytes, checksum: 3496050812602985e88bf7b7869feef5 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Contents iii
List of Figures v
Chapter 1 Introduction 1
Chapter 2 General Formalism 4
2.1 Differential Cross Sections 7
2.2 Free Electron Approximation 9
2.3 Equivalent Photon Approximation 11
Chapter 3 Toy Model - Hydrogen 13
3.1 Neutrinos 14
3.2 Dark Matter 14
Chapter 4 Ab Initio Description of Germanium 18
4.1 The MCRRPA Theory 18
4.2 Atomic Structure of Germanium by MCDF 24
4.3 Photoabsorption of Germanium by MCRRPA 25
Chapter 5 Neutrino-Impact Ge Atomic Ionization 30
5.1 Weak Interaction 31
5.2 Magnetic and Electric Dipole Moments 33
5.3 Electric Charge 34
5.4 Charge Radius and Anapole Moments 37
Chapter 6 Conclusion 39
Bibliography 40
dc.language.isozh-TW
dc.subject自由電子近似zh_TW
dc.subject相對論性混相理論zh_TW
dc.subject原子游離zh_TW
dc.subject鍺原子zh_TW
dc.subject暗物質zh_TW
dc.subject等效光子近似zh_TW
dc.subject微中子zh_TW
dc.subjectdark matteren
dc.subjectequivalent photon approximationen
dc.subjectfree electron approximationen
dc.subjectrandom phase approximationen
dc.subjectionizationen
dc.subjectgermaniumen
dc.subjectneutrinoen
dc.title利用原子游離以尋找微中子電磁性質和暗物質zh_TW
dc.titleDetection of neutrino electromagnetic properties and dark matter via atomic ionizationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉承邦(Cheng-Pang Liu),紀信昌(Hsin-Chang Chi),王子敬(Henry Tsz-king Wong)
dc.subject.keyword微中子,暗物質,鍺原子,原子游離,相對論性混相理論,自由電子近似,等效光子近似,zh_TW
dc.subject.keywordneutrino,dark matter,germanium,ionization,random phase approximation,free electron approximation,equivalent photon approximation,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2014-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved