請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57620完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卡艾瑋(Herve Capart) | |
| dc.contributor.author | Wan-Ching Weng | en |
| dc.contributor.author | 翁琬晴 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:54:29Z | - |
| dc.date.available | 2014-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-21 | |
| dc.identifier.citation | [1] Capart, H. (2000). Dam-break induced geomorphic flows and the transitions from solid-to fluid-like behaviour across evolving interfaces. 2000. These de doctorat, Universite catholique de Louvain
[2] Capart, H., & Young, D. (2002). Two-layer shallow water computations of torrential geomorphic flows. Paper presented at the Proceedings of River Flow. [3] Capart, H., Hsu, J. P., Lai, S. Y., & Hsieh, M. L. (2010). Formation and decay of a tributary‐dammed lake, Laonong River, Taiwan. Water Resources Research, 46(11). [4] Capart, H. (2013). Shallow flow. Lecture notes, National Taiwan University. [5] Chen, S. (1999). Failure mechanism and disaster mitigation on landslide-dammed lakes. J. Chin. Soil Water Conserv, 30(4), 299-311. [6] Chen, S., & Hsu, C. (2009). Landslide dams induced by Typhoon Morakot and its risk assessment. Sino-Geotechnics, 122, 77-86. [7] Cheng, H.-Y. (2011). Confluence morphodynamics with tributary influx and Lake Formation: field survey and experiments. M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University, 1-180. [8] Dong, J.-J., Li, Y.-S., Kuo, C.-Y., Sung, R.-T., Li, M.-H., Lee, C.-T., Chen, C.-C, Lee, W.-R. (2011). The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan—part I: post-event reconstruction of dam geometry. Engineering Geology, 123(1), 40-59. [9] Fraccarollo, L., Capart, H., and Zech, Y. (2003). A Godunov method for the computation of erosional shallow water transients. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 41, 951–976. [10] Fraccarollo, L., and Capart, H. (2002). Riemann wave description of erosional dam-break flows. Journal of Fluid Mechanics, 461, 183-228. [11] Harten, A., Lax, P. D., and Leer, B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM review, 25, 35-61. [12] Hou, C.-Y. (2009). One-dimensional river morphodynamics with lake storage and tributary influx. M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University, 1-164. [13] Hsu, J. P. C., & Capart, H. (2008). Onset and growth of tributary-dammed lakes. Water Resources Research, 44(11) [14] Hsu, P.-C. (2007). Onset and growth of tributary-dammed lakes across alluvial rivers: theory and experiments. M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University, 1-106. [15] Ke, W. T. (2005). Formation of symmetrically palmated deltas: shallow flow computations and experimental study, M.S. thesis, Graduate Institute of Civil Engineering, National Taiwan University.1-90. [16] Strang, G. (1968). On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. [17] Toro, E. F. (1992). Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 338(1649), 43-68. [18] Van Leer, B. (1977a). Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. Journal of computational physics, 23, 263-275. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57620 | - |
| dc.description.abstract | 本篇論文結合實驗與數值計算模擬支流大量供砂下河床變化之情形。實驗渠道為長312公分,寬1.2公分的小尺度實驗,以上游流量與供砂量達動床平衡作為初始條件,在渠道中游提供三種供砂量,並藉此使河川形貌動力產生不同的現象,經由影像處理自動捕捉底床與水面的變化,再透過淺水方程式 (Shallow water equation),艾克納方程式 (Exner equation)以及邊界特徵結構分析 (Eigenstructure analysis),並根據HLL與LHLL和有限體積法建立一維雙層地貌數值模式。本文中亦延伸該模式至二階精度以探討不同階數次序的模擬差異,最後透過實驗結果以檢核數值模擬的表現。 | zh_TW |
| dc.description.abstract | In this study, one-dimension laboratory experiments and mathematical descriptions are used to perform the evolution of river influenced by tributary sediment influx. For the small-scale laboratory experiments (312cm long and 1.2 cm width), three tests are conducted to describe the differences of the morphodynamic response of the river bed: tributary-induced cuspate aggradation, tributary-dammed lake and water blocking dam. To simulate the phenomena, the numerical model dividing the flow into two layers, a pure water layer and a sediment transport layer, adopts shallow water equations that govern the evolution of each interface: with appropriate boundaries which depend on characteristics equations. According to the HLL, LHLL scheme and finite volume numerical solver, the model can be extended to both first-order and second-order accurate version. The proposed methods are applied to the laboratory experiments in order to examine the performance of the one dimensional geomorphological model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:54:29Z (GMT). No. of bitstreams: 1 ntu-103-R01521308-1.pdf: 137276493 bytes, checksum: d5557683a8bfbff66892630ac51af4d8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 Shallow water model 4 2.1 Governing equations 5 2.2 Boundary conditions 6 2.2.1 Eigenvalue analysis of simple case 6 2.2.2 Eigenvalue analysis of simulated model 8 2.3 First-order computational scheme 10 2.3.1 HLL scheme ( Harten, Lax and Van Leer , 1983) 10 2.3.2 LHLL scheme ( L. Fraccarollo, H.Capart, Y.Zech, 2003) 11 2.3.3 Hyperbolic operator 12 2.3.4 Source operator 13 2.3.5 Avalanche operator 14 2.4 Second-order accuracy 15 2.4.1 The CLF condition 17 2.5 Validation 18 2.5.1 Dam-break and horizontal erodible bed 19 2.5.2 Steady uniform flow 21 2.5.3 Avalanche operator 23 Chapter 3 Laboratory Experiments 24 3.1 Experimental channel 24 3.2 Water discharge and sediment supply 26 3.3 Experimental procedure 30 3.4 Experiment results 31 Chapter 4 Image processing 33 4.1 Image preprocessing 33 4.2 Sketch water surface and riverbed 35 4.3 Results of image processing 35 Chapter 5 Results and comparison 37 5.1 Experimental profile observation 37 5.2 Comparison with shallow flow model 41 5.2.1 The longitudinal profiles 41 5.2.2 Grid size 46 5.2.3 Hydrographs 47 5.3 Summary 50 Chapter 6 Conclusion 51 REFERENCES 52 | |
| dc.language.iso | en | |
| dc.subject | 河床演變 | zh_TW |
| dc.subject | HLL | zh_TW |
| dc.subject | 一維淺水方程模式 | zh_TW |
| dc.subject | 特徵結構 | zh_TW |
| dc.subject | 二階精度 | zh_TW |
| dc.subject | 支流堰塞湖 | zh_TW |
| dc.subject | Second-order accuracy | en |
| dc.subject | Tributary-dammed lake | en |
| dc.subject | HLL | en |
| dc.subject | Eigenstructure | en |
| dc.subject | One dimensional shallow-water model | en |
| dc.subject | Fluvial geomorphology evolution | en |
| dc.title | 支流堰塞湖演變分析:實驗與數值方法 | zh_TW |
| dc.title | Experimental and numerical study of evolving tributary-dammed lakes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周憲德(Hsien-Ter Chou),謝孟龍(Meng-Long Hsieh),賴悅仁 | |
| dc.subject.keyword | 河床演變,支流堰塞湖,HLL,特徵結構,一維淺水方程模式,二階精度, | zh_TW |
| dc.subject.keyword | Fluvial geomorphology evolution,Tributary-dammed lake,HLL,Eigenstructure,One dimensional shallow-water model,Second-order accuracy, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 134.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
