請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳振陽(Jen-Yang Chen) | |
| dc.contributor.author | Shih-Hsin Chiu | en |
| dc.contributor.author | 邱世昕 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:54:10Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-21 | |
| dc.identifier.citation | Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95: 548-553
Adams A (1987) Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61: 1743-1746 Adams A, Lindahl T (1975) Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA 72: 1477-1481 Addison C, Rixon FJ, Preston VG (1990) Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J Gen Virol 71: 2377-2384 Adelman K, Salmon B, Baines JD (2001) Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci USA 98: 3086-3091 Albrecht M, Darai G, Flugel RM (1985) Analysis of the genomic termini of tupaia herpesvirus DNA by restriction mapping and nucleotide sequencing. J Virol 56: 466-474 Armstrong RW, Imrey PB, Lye MS, Armstrong MJ, Yu MC, Sani S (1998) Nasopharyngeal carcinoma in Malaysian Chinese: salted fish and other dietary exposures. Int J Cancer 77: 228-235 Arrand JR, Rymo L (1982) Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J Virol 41: 376-389 Arrand JR, Rymo L, Walsh JE, Bjorck E, Lindahl T, Griffin BE (1981) Molecular cloning of the complete Epstein-Barr virus genome as a set of overlapping restriction endonuclease fragments. Nucleic Acids Res 9: 2999-3014 Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, Tuffnell PS, Barrell BG (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207-211 Baines JD, Poon AP, Rovnak J, Roizman B (1994) The herpes simplex virus 1 UL15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J Virol 68: 8118-8124 Baldwin AS, Jr. (1996) The NF-kB and IkB proteins: new discoveries and insights. Annu Rev Immunol 14: 649-681 Bankier AT, Diertrich W, Baer R, Barrell BG, Colbere-Garapin F, Fleckenstein B, Bodemer W (1985) Terminal repetitive sequences in herpesvirus saimiri virion DNA. J Virol 55: 133-139 Beard PM, Taus NS, Baines JD (2002) DNA cleavage and packaging proteins encoded by genes U(L)28, U(L)15, and U(L)33 of herpes simplex virus type 1 form a complex in infected cells. J Virol 76: 4785-4791 Becker A, Gold M (1978) Enzymatic breakage of the cohesive end site of phage l DNA: terminase (ter) reaction. Proc Natl Acad Sci USA 75: 4199-4203 Becker A, Murialdo H (1990) Bacteriophage lambda DNA: the beginning of the end. J Bacteriol 172: 2819-2814 Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F, Tai ES, Kang T, Liu ET, Liu J, Zeng YX (2010) A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42: 599-603 Bhattacharyya SP, Rao VB (1993) A novel terminase activity associated with the DNA packaging protein gp17 of bacteriophage T4. Virology 196: 34-44 Biggin M, Bodescot M, Perricaudet M, Farrell P (1987) Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61: 3120-3132 Bogner E (2002) Human cytomegalovirus terminase as a target for antiviral chemotherapy. Rev Med Virol 12: 115-127 Bogner E, Radsak K, Stinski MF (1998) The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 72: 2259-2264 Bogner E, Reschke M, Reis B, Mockenhaupt T, Radsak K (1993) Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology 196: 290-293 Borst EM, Kleine-Albers J, Gabaev I, Babic M, Wagner K, Binz A, Degenhardt I, Kalesse M, Jonjic S, Bauerfeind R, Messerle M (2013) The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol 87: 1720-1732 Broll H, Buhk HJ, Zimmermann W, Goltz M (1999) Structure and function of the prDNA and the genomic termini of the g2-herpesvirus bovine herpesvirus type 4. J Gen Virol 80: 979-986 Brooks L, Yao QY, Rickinson AB, Young LS (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66: 2689-2697 Buell P (1974) The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer Res 34: 1189-1191 Cabras G, Decaussin G, Zeng Y, Djennaoui D, Melouli H, Broully P, Bouguermouh AM, Ooka T (2005) Epstein-Barr virus encoded BALF1 gene is transcribed in Burkitt's lymphoma cell lines and in nasopharyngeal carcinoma's biopsies. J Clin Virol 34: 26-34 Cameron KR, Stamminger T, Craxton M, Bodemer W, Honess RW, Fleckenstein B (1987) The 160,000-Mr virion protein encoded at the right end of the herpesvirus saimiri genome is homologous to the 140,000-Mr membrane antigen encoded at the left end of the Epstein-Barr virus genome. J Virol 61: 2063-2070 Cao SM, Liu Z, Jia WH, Huang QH, Liu Q, Guo X, Huang TB, Ye W, Hong MH (2011) Fluctuations of Epstein-Barr virus serological antibodies and risk for nasopharyngeal carcinoma: a prospective screening study with a 20-year follow-up. PloS one 6: e19100 Champier G, Couvreux A, Hantz S, Rametti A, Mazeron MC, Bouaziz S, Denis F, Alain S (2008) Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity. Antivir Ther (Lond) 13: 643-654 Chan AS, To KF, Lo KW, Ding M, Li X, Johnson P, Huang DP (2002a) Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer 102: 300-303 Chan AS, To KF, Lo KW, Mak KF, Pak W, Chiu B, Tse GM, Ding M, Li X, Lee JC, Huang DP (2000) High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res 60: 5365-5370 Chan AT, Teo PM, Johnson PJ (2002b) Nasopharyngeal carcinoma. Ann Oncol 13: 1007-1015 Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15: 1765-1777 Chang LK, Liu ST (2000) Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28: 3918-3925 Chang Y, Cheng SD, Tsai CH (2002) Chromosomal integration of Epstein-Barr virus genomes in nasopharyngeal carcinoma cells. Head Neck 24: 143-150 Chang Y, Tung CH, Huang YT, Lu J, Chen JY, Tsai CH (1999) Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73: 8857-8866 Chang YH, Lee CP, Su MT, Wang JT, Chen JY, Lin SF, Tsai CH, Hsieh MJ, Takada K, Chen MR (2012) Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PloS one 7: e39217 Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci USA 98: 10085-10089 Chen CJ, Liang KY, Chang YS, Wang YF, Hsieh T, Hsu MM, Chen JY, Liu MY (1990) Multiple risk factors of nasopharyngeal carcinoma: Epstein-Barr virus, malarial infection, cigarette smoking and familial tendency. Anticancer Res 10: 547-553 Chen JY, Chen CJ, Liu MY, Cho SM, Hsu MM, Lynn TC, Shieh T, Tu SM, Beasley RP, Hwang LY, et al. (1989) Antibody to Epstein-Barr virus-specific DNase as a marker for field survey of patients with nasopharyngeal carcinoma in Taiwan. J Med Virol 27: 269-273 Chen JY, Chen CJ, Liu MY, Cho SM, Hsu MM, Lynn TC, Shieh T, Tu SM, Lee HH, Kuo SL, et al. (1987) Antibodies to Epstein-Barr virus-specific DNase in patients with nasopharyngeal carcinoma and control groups. J Med Virol 23: 11-21 Chen JY, Hwang LY, Beasley RP, Chien CS, Yang CS (1985) Antibody response to Epstein-Barr-virus-specific DNase in 13 patients with nasopharyngeal carcinoma in Taiwan: a retrospective study. J Med Virol 16: 99-105 Chen YJ, Ko JY, Chen PJ, Shu CH, Hsu MT, Tsai SF, Lin CH (1999) Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization. Genes, chromosomes & cancer 25: 169-175 Chen YJ, Tsai WH, Chen YL, Ko YC, Chou SP, Chen JY, Lin SF (2011) Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells. PloS one 6: e17809 Chen YR, Liu MT, Chang YT, Wu CC, Hu CY, Chen JY (2008) Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 82: 8124-8137 Cheng R, Lo K, Huang D, Tsao S (1997) Loss of heterozygosity on chromosome 14 in primary nasopharyngeal carcinoma. Int J Oncol 10: 1047-1050 Cheng YC, Chen JY, Glaser R, Henle W (1980) Frequency and levels of antibodies to Epstein-Barr virus-specific DNase are elevated in patients with nasopharyngeal carcinoma. Proc Natl Acad Sci USA 77: 6162-6165 Cheng YJ, Hildesheim A, Hsu MM, Chen IH, Brinton LA, Levine PH, Chen CJ, Yang CS (1999) Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer causes & control : CCC 10: 201-207 Chien G, Yuen PW, Kwong D, Kwong YL (2001a) Comparative genomic hybridization analysis of nasopharygeal carcinoma: consistent patterns of genetic aberrations and clinicopathological correlations. Cancer Genet Cytogenet 126: 63-67 Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, Yang CS (2001b) Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345: 1877-1882 Chua DT, Ma J, Sham JS, Mai HQ, Choy DT, Hong MH, Lu TX, Min HQ (2005) Long-term survival after cisplatin-based induction chemotherapy and radiotherapy for nasopharyngeal carcinoma: a pooled data analysis of two phase III trials. J Clin Oncol 23: 1118-1124 Cochet C, Martel-Renoir D, Grunewald V, Bosq J, Cochet G, Schwaab G, Bernaudin JF, Joab I (1993) Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197: 358-365 Crawford DH (2004) Epstein-Barr virus. In Principles and Practice of Clinical Virology, Zuckerman AJ, Banatvala JE, Pattison JR, Griffiths PD, Schoub BD (eds), 5th edn, pp 123-146. Chichester, UK: John Wiley & Sons, Ltd Crook T, Nicholls JM, Brooks L, O'Nions J, Allday MJ (2000) High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19: 3439-3444 Cue D, Feiss M (1993) The role of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage l, in the nicking reaction. J Mol Biol 234: 594-609 Dambaugh T, Hennessy K, Chamnankit L, Kieff E (1984) U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA 81: 7632-7636 Davison AJ (1984) Structure of the genome termini of varicella-zoster virus. J Gen Virol 65: 1969-1977 de-The G (1982) Epidemiology of Epstein-Barr virus and associated diseases in man. In Herpesviruses, Roizman B (ed), pp 25-103. New York, US: Plenum Press de-The G, Ho JH, Ablashi DV, Day NE, Macario AJ, Martin-Berthelon MC, Pearson G, Sohier R (1975) Nasopharyngeal carcinoma. IX. Antibodies to EBNA and correlation with response to other EBV antigens in Chinese patients. Int J Cancer 16: 713-721 de-The G, Lavoue MF, Muenz L (1978) Differences in EBV antibody titres of patients with nasopharyngeal carcinoma originating from high, intermediate and low incidence areas. IARC Sci Publ: 471-481 de-Vathaire F, Sancho-Garnier H, de-The H, Pieddeloup C, Schwaab G, Ho JH, Ellouz R, Micheau C, Cammoun M, Cachin Y, et al. (1988) Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int J Cancer 42: 176-181 de Turenne-Tessier M, Ooka T, Calender A, de-The G, Daillie J (1989) Relationship between nasopharyngeal carcinoma and high antibody titers to Epstein-Barr virus-specific thymidine kinase. Int J Cancer 43: 45-48 Deiss LP, Chou J, Frenkel N (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol 59: 605-618 Deiss LP, Frenkel N (1986) Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J Virol 57: 933-941 Deng YF, Zhou DN, Lu YD (2007) Frequent allelic loss at the FRA3B site in endemic nasopharyngeal carcinoma: association with clinical features and Epstein-Barr virus infection. J Laryngol Otol 121: 1073-1078 Deng Z, Atanasiu C, Burg JS, Broccoli D, Lieberman PM (2003) Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol 77: 11992-12001 Dhar SK, Yoshida K, Machida Y, Khaira P, Chaudhuri B, Wohlschlegel JA, Leffak M, Yates J, Dutta A (2001) Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106: 287-296 Dheekollu J, Lieberman PM (2011) The replisome pausing factor Timeless is required for episomal maintenance of latent Epstein-Barr virus. J Virol 85: 5853-5863 Dillner J, Kallin B, Alexander H, Ernberg I, Uno M, Ono Y, Klein G, Lerner RA (1986) An Epstein-Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proc Natl Acad Sci USA 83: 6641-6645 Edson CM, Thorley-Lawson DA (1981) Epstein-Barr virus membrane antigens: characterization, distribution, and strain differences. J Virol 39: 172-184 Faggioni A, Zompetta C, Grimaldi S, Barile G, Frati L, Lazdins J (1986) Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232: 1554-1556 Fahmi H, Cochet C, Hmama Z, Opolon P, Joab I (2000) Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol 74: 5810-5818 Fan CS, Wong N, Leung SF, To KF, Lo KW, Lee SW, Mok TS, Johnson PJ, Huang DP (2000) Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma. Hum Pathol 31: 169-178 Fang CY, Lee CH, Wu CC, Chang YT, Yu SL, Chou SP, Huang PT, Chen CL, Hou JW, Chang Y, Tsai CH, Takada K, Chen JY (2009) Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 124: 2016-2025 Feederle R, Shannon-Lowe C, Baldwin G, Delecluse HJ (2005) Defective infectious particles and rare packaged genomes produced by cells carrying terminal-repeat-negative Epstein-Barr virus. J Virol 79: 7641-7647 Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455: 81-95 Fenech M (2002) Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today 7: 1128-1137 Fennewald S, van Santen V, Kieff E (1984) Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol 51: 411-419 Fixman ED, Hayward GS, Hayward SD (1995) Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69: 2998-3006 Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, Fujita M, Tsurumi T (2000) The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 74: 2550-2557 Gardella T, Medveczky P, Sairenji T, Mulder C (1984) Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J Virol 50: 248-254 Giesen K, Radsak K, Bogner E (2000) The potential terminase subunit of human cytomegalovirus, pUL56, is translocated into the nucleus by its own nuclear localization signal and interacts with importin a. J Gen Virol 81: 2231-2244 Grafstrom RH, Alwine JC, Steinhart WL, Hill CW (1975) Terminal repetitions in herpes simplex virus type 1 DNA. Cold Spring Harb Symp Quant Biol 39: 679-681 Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245-250 Hammerschmidt W, Ludwig H, Buhk HJ (1988) Specificity of cleavage in replicative-form DNA of bovine herpesvirus 1. J Virol 62: 1355-1363 Hammerschmidt W, Sugden B (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55: 427-433 Hammerschmidt W, Sugden B (1989) Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340: 393-397 Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70 Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674 Hardwick JM, Lieberman PM, Hayward SD (1988) A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62: 2274-2284 Henle G, Henle W (1976) Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17: 1-7 Henle W, Ho JH, Henle G, Chau JC, Kwan HC (1977) Nasopharyngeal carcinoma: significance of changes in Epstein-Barr virus-related antibody patterns following therapy. Int J Cancer 20: 663-672 Hennessy K, Fennewald S, Kieff E (1985) A third viral nuclear protein in lymphoblasts immortalized by Epstein-Barr virus. Proc Natl Acad Sci USA 82: 5944-5948 Higgins RR, Becker A (1994) Chromosome end formation in phage l, catalyzed by terminase, is controlled by two DNA elements of cos, cosN and R3, and by ATP. EMBO J 13: 6152-6161 Higgins RR, Becker A (1995) Interaction of terminase, the DNA packaging enzyme of phage l, with its cos DNA substrate. J Mol Biol 252: 31-46 Higgins RR, Lucko HJ, Becker A (1988) Mechanism of cos DNA cleavage by bacteriophage l terminase: multiple roles of ATP. Cell 54: 765-775 Hildesheim A, West S, DeVeyra E, De Guzman MF, Jurado A, Jones C, Imai J, Hinuma Y (1992) Herbal medicine use, Epstein-Barr virus, and risk of nasopharyngeal carcinoma. Cancer Res 52: 3048-3051 Ho HC, Ng MH, Kwan HC (1978) Factors affecting serum IgA antibody to Epstein-Barr viral capsid antigens in nasopharyngeal carcinoma. Br J Cancer 37: 356-362 Huang da W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13 Huang da W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57 Huang DP, Lo KW, Choi PH, Ng AY, Tsao SY, Yiu GK, Lee JC (1991) Loss of heterozygosity on the short arm of chromosome 3 in nasopharyngeal carcinoma. Cancer Genet Cytogenet 54: 91-99 Huang DP, Lo KW, van Hasselt CA, Woo JK, Choi PH, Leung SF, Cheung ST, Cairns P, Sidransky D, Lee JC (1994) A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res 54: 4003-4006 Hui AB, Lo KW, Leung SF, Choi PH, Fong Y, Lee JC, Huang DP (1996) Loss of heterozygosity on the long arm of chromosome 11 in nasopharyngeal carcinoma. Cancer Res 56: 3225-3229 Hui AB, Lo KW, Leung SF, Teo P, Fung MK, To KF, Wong N, Choi PH, Lee JC, Huang DP (1999) Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. Int J Cancer 82: 498-503 Hutt-Fletcher LM, Lake CM (2001) Two Epstein-Barr virus glycoprotein complexes. Curr Top Microbiol Immunol 258: 51-64 Hwang JS, Bogner E (2002) ATPase activity of the terminase subunit pUL56 of human cytomegalovirus. J Biol Chem 277: 6943-6948 Jacobson JG, Yang K, Baines JD, Homa FL (2006) Linker insertion mutations in the herpes simplex virus type 1 UL28 gene: effects on UL28 interaction with UL15 and UL33 and identification of a second-site mutation in the UL15 gene that suppresses a lethal UL28 mutation. J Virol 80: 12312-12323 Ji MF, Wang DK, Yu YL, Guo YQ, Liang JS, Cheng WM, Zong YS, Chan KH, Ng SP, Wei WI, Chua DT, Sham JS, Ng MH (2007) Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br J Cancer 96: 623-630 Karran L, Gao Y, Smith PR, Griffin BE (1992) Expression of a family of complementary-strand transcripts in Epstein-Barr virus-infected cells. Proc Natl Acad Sci USA 89: 8058-8062 Koslowski KM, Shaver PR, Casey JT, II, Wilson T, Yamanaka G, Sheaffer AK, Tenney DJ, Pederson NE (1999) Physical and functional interactions between the herpes simplex virus UL15 and UL28 DNA cleavage and packaging proteins. J Virol 73: 1704-1707 Kristensen M, Quek HH, Chew CT, Chan SH (1991) A cytogenetic study of 74 nasopharyngeal carcinoma biopsies. Ann Acad Med Singapore 20: 597-600 Krosky PM, Underwood MR, Turk SR, Feng KW, Jain RK, Ptak RG, Westerman AC, Biron KK, Townsend LB, Drach JC (1998) Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J Virol 72: 4721-4728 Krueger GR, Kottaridis SD, Wolf H, Ablashi DV, Sesterhenn K, Bertram G (1981) Histological types of nasopharyngeal carcinoma as compared to EBV serology. Anticancer Res 1: 187-194 Lee AW, Foo W, Law SC, Poon YF, O SK, Tung SY, Sze WM, Chappell R, Lau WH, Ho JH (1999) Staging of nasopharyngeal carcinoma: from Ho's to the new UICC system. Int J Cancer 84: 179-187 Lee AW, Sze WM, Au JS, Leung SF, Leung TW, Chua DT, Zee BC, Law SC, Teo PM, Tung SY, Kwong DL, Lau WH (2005) Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys 61: 1107-1116 Lee CH, Fang CY, Sheu JJ, Chang Y, Takada K, Chen JY (2008) Amplicons on chromosome 3 contain oncogenes induced by recurrent exposure to 12-O-tetradecanoylphorbol-13-acetate and sodium n-butyrate and Epstein-Barr virus reactivation in a nasopharyngeal carcinoma cell line. Cancer Genet Cytogenet 185: 1-10 Lee DF, Chen CC, Hsu TA, Juang JL (2000) A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol 74: 11873-11880 Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643-649 Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, Chuang SM (1990) Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 62: 713-724 Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY (2003) Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 21: 631-637 Lin SF, Hsu TY, Liu MY, Lin LS, Yang HL, Chen JY, Yang CS (1995) Characterization of Epstein-Barr virus DNase and its interaction with the major DNA binding protein. Virology 208: 712-722 Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C, Hulme W, Hedges D, Taylor CM, Flemington EK (2013) Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87: 1172-1182 Liu MT, Chang YT, Chen SC, Chuang YC, Chen YR, Lin CS, Chen JY (2005) Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 24: 2635-2646 Liu MT, Chen YR, Chen SC, Hu CY, Lin CS, Chang YT, Wang WB, Chen JY (2004) Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23: 2531-2539 Liu MY, Chang YL, Ma J, Yang HL, Hsu MM, Chen CJ, Chen JY, Yang CS (1997) Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52: 262-269 Liu MY, Chou WH, Nutter L, Hsu MM, Chen JY, Yang CS (1989) Antibody against Epstein-Barr virus DNA polymerase activity in sera of patients with nasopharyngeal carcinoma. J Med Virol 28: 101-105 Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59: 1188-1191 Lu CC, Jeng YY, Tsai CH, Liu MY, Yeh SW, Hsu TY, Chen MR (2006) Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345: 358-372 Luka J, Deeb ZE, Hartmann DP, Jenson B, Pearson GR (1988) Detection of antigens associated with Epstein-Barr virus replication in extracts from biopsy specimens of nasopharyngeal carcinomas. J Natl Cancer Inst 80: 1164-1167 Lynn TC, Tu SM, Kawamura A, Jr. (1985) Long-term follow-up of IgG and IgA antibodies against viral capsid antigens of Epstein-Barr virus in nasopharyngeal carcinoma. J Laryngol Otol 99: 567-572 Mabuchi K, Bross DS, Kessler, II (1985) Cigarette smoking and nasopharyngeal carcinoma. Cancer 55: 2874-2876 Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334: 1191-1197 Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40-46 Marks JR, Spector DH (1988) Replication of the murine cytomegalovirus genome: structure and role of the termini in the generation and cleavage of concatenates. Virology 162: 98-107 Marquitz AR, Raab-Traub N (2012) The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol 22: 166-172 Martel-Renoir D, Grunewald V, Touitou R, Schwaab G, Joab I (1995) Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol 76: 1401-1408 McCredie M, Williams S, Coates M (1999) Cancer mortality in East and Southeast Asian migrants to New South Wales, Australia, 1975-1995. Br J Cancer 79: 1277-1282 McVoy MA, Nixon DE, Adler SP, Mocarski ES (1998) Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 72: 48-56 Miller G, Shope T, Lisco H, Stitt D, Lipman M (1972) Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci USA 69: 383-387 Mitelman F, Mark-Vendel E, Mineur A, Giovanella B, Klein G (1983) A 3q+ marker chromosome in EBV-carrying nasopharyngeal carcinomas. Int J Cancer 32: 651-655 Mocarski ES, Liu AC, Spaete RR (1987) Structure and variability of the a sequence in the genome of human cytomegalovirus (Towne strain). J Gen Virol 68: 2223-2230 Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN (1988) Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54: 831-840 Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H (2012) Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 287: 23977-23994 Mosig G, Ghosal D, Bock S (1981) Interactions between the maturation protein gp17 and the single-stranded DNA binding protein gp32 initiate DNA packaging and compete with initiation of secondary DNA replication forks in phage T4. Prog Clin Biol Res 64: 139-150 Mutirangura A, Tanunyutthawongese C, Pornthanakasem W, Kerekhanjanarong V, Sriuranpong V, Yenrudi S, Supiyaphun P, Voravud N (1997) Genomic alterations in nasopharyngeal carcinoma: loss of heterozygosity and Epstein-Barr virus infection. Br J Cancer 76: 770-776 Nam JM, McLaughlin JK, Blot WJ (1992) Cigarette smoking, alcohol, and nasopharyngeal carcinoma: a case-control study among U.S. whites. J Natl Cancer Inst 84: 619-622 Neel HB, 3rd, Pearson GR, Taylor WF (1984) Antibodies to Epstein-Barr virus in patients with nasopharyngeal carcinoma and in comparison groups. Ann Otol Rhinol Laryngol 93: 477-482 Nellissery JK, Szczepaniak R, Lamberti C, Weller SK (2007) A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation. J Virol 81: 8868-8877 Newcomb WW, Homa FL, Brown JC (2006) Herpes simplex virus capsid structure: DNA packaging protein UL25 is located on the external surface of the capsid near the vertices. J Virol 80: 6286-6294 Ng WT, Lee MC, Hung WM, Choi CW, Lee KC, Chan OS, Lee AW (2011) Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 79: 420-428 Ng WT, Yuen KT, Au KH, Chan OS, Lee AW (2014) Staging of nasopharyngeal carcinoma - The past, the present and the future. Oral Oncol 50: 549-554 Nonoyama M, Pagano JS (1972) Separation of Epstein-Barr virus DNA from large chromosomal DNA in non-virus-producing cells. Nature New Biol 238: 169-171 Nonoyama M, Tanaka A (1975) Plasmid DNA as a possible state of Epstein-Barr virus genomes in nonproductive cells. Cold Spring Harb Symp Quant Biol 39: 807-810 Nyormoi O, Thorley-Lawson DA, Elkington J, Strominger JL (1976) Differential effect of phosphonoacetic acid on the expression of Epstein-Barr viral antigens and virus production. Proc Natl Acad Sci USA 73: 1745-1748 Okano M, Thiele GM, Davis JR, Grierson HL, Purtilo DT (1988) Epstein-Barr virus and human diseases: recent advances in diagnosis. Clin Microbiol Rev 1: 300-312 Old LJ, Boyse EA, Oettgen HF, Harven ED, Geering G, Williamson B, Clifford P (1966) Precipitating antibody in human serum to an antigen present in cultured burkitt's lymphoma cells. Proc Natl Acad Sci USA 56: 1699-1704 Ooka T, de Turenne-Tessier M, Stolzenberg MC (1991) Relationship between antibody production to Epstein-Barr virus (EBV) early antigens and various EBV-related diseases. Springer Semin Immunopathol 13: 233-247 Or YY, Hui AB, Tam KY, Huang DP, Lo KW (2005) Characterization of chromosome 3q and 12q amplicons in nasopharyngeal carcinoma cell lines. Int J Oncol 26: 49-56 Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci USA 93: 11675-11680 Oya Y, Tonomura A, Yamamoto K (1987) The biological activity of hydrogen peroxide. III. Induction of Epstein-Barr virus via indirect action, as compared with TPA and teleocidin. Int J Cancer 40: 69-73 Pan SH, Tai CC, Lin CS, Hsu WB, Chou SF, Lai CC, Chen JY, Tien HF, Lee FY, Wang WB (2009) Epstein-Barr virus nuclear antigen 2 disrupts mitotic checkpoint and causes chromosomal instability. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57614 | - |
| dc.description.abstract | EB病毒BALF3與第一型疱疹單純病毒溶裂複製有關的末端酶UL28具高度同源性,然而BALF3對於EB病毒生活史與宿主細胞的影響至今仍尚未清楚。為了釐清BALF3的特性,利用純化的BALF3蛋白來進行試管中酵素反應實驗,發現BALF3具有核酸內切酶的活性且可由鎂錳離子與ATP分子來調控。此外,當帶有EB病毒的鼻咽癌細胞中的EB病毒進入溶裂期時,BALF3會開始表現並由細胞質進入細胞核中。進一步將BALF3基因默化則明顯降低病毒DNA包裝作用與病毒顆粒的產生,同時也減少病毒DNA合成效率。另一方面,BALF3可造成EB病毒陰性的鼻咽癌細胞產生基因不穩定性如微核形成及DNA斷裂的增加,而細胞經過BALF3反覆表現影響後,出現顯著的基因拷貝數變異及細胞移行、細胞侵襲與球狀體形成等腫瘤特徵,同時將其細胞注射至具免疫缺陷的小鼠體中,與控制組相較之下則形成較大的腫瘤。最後,利用RNA微陣列發現BALF3反覆表現會影響許多癌症相關基因及致癌基因的表現,而其變化與基因變異相關。因此,由以上的實驗結果可得知EB病毒BALF3參與病毒DNA合成、切割與包裝進而影響病毒顆粒產生,以及也扮演EB病毒感染導致鼻咽癌發生的潛在角色。 | zh_TW |
| dc.description.abstract | Epstein-Barr virus (EBV) BALF3 is a homologue of the herpes simplex virus type 1 terminase UL28 that is responsible for viral lytic replication. However, the effects of BALF3 on the EBV life cycle and host cells are still unclear. In order to characterize BALF3, the purified protein was produced and examined in an enzymatic reaction in vitro, which determined that BALF3 acts as an endonuclease, and its activity is modulated by Mg2+, Mn2+, and ATP. Moreover, in EBV-positive nasopharyngeal carcinoma (NPC) cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following lytic induction, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Meanwhile, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the other hand, BALF3 has the ability to induce host genomic instability, such as micronucleus formation and DNA strand breaks. After recurrent expression of BALF3 in EBV-negative NPC cells, genomic copy number aberrations had accumulated to a significant extent, and tumorigenic features such as cell migration, cell invasion, and spheroid formation increased with the rounds of induction. In parallel experiments, cells after highly recurrent induction developed into larger tumor nodules than control cells when inoculated into NOD/SCID mice. Furthermore, RNA microarrays showed that differential expression of multiple cancer capability-related genes and oncogenes increased with recurrent BALF3 expression, and these changes were correlated with genetic aberrations. Therefore, EBV BALF3 is involved simultaneously in DNA synthesis, cleavage, and packaging, which accounts for the production of mature virions, and it also is a potential factor that mediates the impact of EBV on nasopharyngeal carcinogenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:54:10Z (GMT). No. of bitstreams: 1 ntu-103-D96445003-1.pdf: 2367883 bytes, checksum: 12fb9dd2528905c9942a3f99e497ffa5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 謝辭.......................................................i
摘要......................................................ii Abstract.................................................iii Chapter 1 Introduction.....................................1 1.1 Epstein-Barr virus (EBV)...............................1 1.1.1 Introduction.........................................1 1.1.2 EBV DNA replication..................................2 1.2 Viral DNA cleavage and packaging.......................3 1.2.1 Terminase............................................3 1.2.2 Terminal repeat of the viral genome..................4 1.3 Nasopharyngeal carcinoma (NPC).........................6 1.3.1 Epidemiology and etiology............................6 1.3.2 Histopathology and staging...........................7 1.3.3 Association between NPC and EBV......................8 1.3.4 Association between NPC and genomic instability......9 1.4 Aim...................................................10 Chapter 2 Materials and methods...........................12 2.1 Buffers...............................................12 2.1.1 Cell culture........................................12 2.1.2 Western blotting....................................12 2.1.3 Protein purification................................12 2.1.4 Subcellular fractionation...........................12 2.1.5 Detection of intracellular viral genomic DNA........13 2.1.6 Purification of viral capsids.......................13 2.1.7 Gardella gel analysis...............................13 2.1.8 Southern blotting and hybridization.................13 2.2 Plasmids..............................................13 2.2.1 pBacPAK8-MTGFP-His-BALF3............................13 2.2.2 pBS-TR..............................................14 2.2.3 pEGFP-C1-BALF3......................................14 2.2.4 pLenti4-BALF3.......................................14 2.3 Primers...............................................14 2.3.1 Polymerase chain reaction (PCR).....................15 2.3.2 Site-directed mutagenesis...........................15 2.4 Small interfering RNAs (siRNAs).......................16 2.5 Cell lines............................................16 2.5.1 Sf9 cells...........................................16 2.5.2 NPC-TW01 and NA cells...............................16 2.5.3 TW01TREx-VC and TW01TREx-BALF3 cells................17 2.6 Site-directed mutagenesis.............................17 2.7 Transfection..........................................18 2.7.1 Expression of the EBV BALF3 protein in the baculovirus expression system…...........................18 2.7.2 Expression of EBV BALF3 with GFP tag in TW01 cells..18 2.7.3 Establishment of tetracycline-regulated BALF3 inducible cell lines......................................18 2.7.4 Knockdown of EBV BALF3..............................18 2.8 Western blotting......................................19 2.9 Expression and purification of the EBV BALF3 protein..19 2.10 In vitro nuclease activity assay.....................20 2.11 PCR and quantitative reverse transcription-PCR (qRT-PCR)......................................................21 2.12 Indirect immunofluorescence staining.................21 2.13 Subcellular fractionation............................22 2.14 Detection and quantification of viral DNA............22 2.15 Ultra-thin sectioning and transmission electron microscopy................................................23 2.16 Purification of viral capsids........................23 2.17 Gardella gel analysis................................24 2.18 Southern blotting and hybridization..................24 2.19 Micronucleus formation assay.........................25 2.20 Cell proliferation assay.............................25 2.21 Recurrent expression of EBV BALF3....................26 2.22 Array-based comparative genomic hybridization (array CGH)......................................................26 2.23 Cell migration assay.................................26 2.24 Cell invasion assay..................................27 2.25 Spheroid assay.......................................27 2.26 In vivo tumorigenesis assay..........................27 2.27 RNA expression analysis..............................28 Chapter 3 Results.........................................29 3.1 The role of EBV BALF3 in the viral life cycle.........29 3.1.1 Expression and purification of EBV BALF3............29 3.1.2 Nuclease activity of EBV BALF3......................30 3.1.3 Expression of EBV BALF3 during the lytic cycle......31 3.1.4 Subcellular localization of EBV BALF3...............32 3.1.5 Contribution of EBV BALF3 to virion production......33 3.1.6 Contribution of EBV BALF3 to viral DNA replication..34 3.2 The role of EBV BALF3 in nasopharyngeal carcinogenesis............................................35 3.2.1 Effects of EBV BALF3 on genomic instability.........35 3.2.2 Accumulation of genomic instability after recurrent expression of EBV BALF3...................................36 3.2.3 Contribution of EBV BALF3 to tumorigenic properties of NPC cells..............................................38 3.2.4 Differential expression of cancer-related genes in NPC cells after recurrent EBV BALF3 expression............39 Chapter 4 Discussion......................................41 4.1 Regulation of the nuclease activity of EBV BALF3......41 4.2 Zinc-finger and leucine-zipper motifs in EBV BALF3....42 4.3 Non-specific nucleolytic reaction by EBV BALF3........43 4.4 Nuclear translocation of EBV BALF3....................44 4.5 Regulation of viral DNA synthesis by EBV BALF3........45 4.6 Abortive lytic cycle of EBV in NPC....................46 4.7 Possible mechanism for host genomic instability induced by EBV BALF3..............................................46 4.8 Design and comparison of experiments of recurrent EBV reactivation and recurrent EBV BALF3 expression...........47 4.9 Differentially expressed cancer-related genes involved in NPC after recurrent EBV BALF3 expression...............48 4.10 Contribution of EBV BALF3 to nasopharyngeal carcinogenesis............................................49 4.11 Conclusion...........................................51 References................................................52 Figures and Tables........................................76 Figure 1 Representative illustrations of plasmids used in this study................................................76 Figure 2 Sequence alignment of putative conserved motifs in human herpesvirus terminase subunits......................77 Figure 3 Expression and purification of EBV BALF3.........78 Figure 4 Nuclease activity of EBV BALF3...................79 Figure 5 Expression of EBV lytic genes in EBV-positive cells during the lytic cycle..............................81 Figure 6 Subcellular localization of EBV BALF3 in EBV-positive cells during the lytic cycle.....................82 Figure 7 Examination of the efficiency of knockdown by siBALF3s in EBV-positive cells during the lytic cycle.....84 Figure 8 Production of mature virions in EBV-positive cells with BALF3 knockdown......................................85 Figure 9 Maturation of capsids in EBV-positive cells with BALF3 knockdown...........................................86 Figure 10 Examination of viral DNA replication in EBV-positive cells with BALF3 knockdown.......................88 Figure 11 Induction of genomic instability in NPC cells with EBV BALF3 expression.................................89 Figure 12 Effect of EBV BALF3 expression on genomic instability and growth of NPC cells.......................90 Figure 13 Examination of EBV BALF3 expression in NPC cells.....................................................92 Figure 14 Accumulation of genomic instability in NPC cells after recurrent EBV BALF3 expression......................93 Figure 15 Examination of cell migration by NPC cells after recurrent EBV BALF3 expression............................95 Figure 16 Examination of cell invasion by NPC cells after recurrent EBV BALF3 expression............................96 Figure 17 Examination of spheroid formation by NPC cells after recurrent EBV BALF3 expression......................97 Figure 18 Examination of cell proliferation by NPC cells after recurrent EBV BALF3 expression......................98 Figure 19 Examination of in vivo tumor growth after recurrent EBV BALF3 expression............................99 Figure 20 Differentially expressed genes in NPC cells after recurrent EBV BALF3 expression...........................100 Figure 21 Examination of the efficiency of knockdown by siBALF3s in TW01TREx-BALF3 cells.........................101 Figure 22 Subcellular localization of EBV BALF3 in TW01TREx-BALF3 cells..............................................102 Figure 23 Expression of EBV BALF3 in NA and TW01TREx-BALF3 cells....................................................103 Figure 24 Roles of EBV BALF3 in viral life cycle and nasopharyngeal carcinogenesis............................104 Table 1 Types of capsids in EBV-positive cells with BALF3 knockdown................................................105 Table 2 Summary of array CGH data with high aberration score....................................................106 Table 3 Gene ontology of genes differentially expressed in NPC cells after recurrent BALF3 expression...............107 | |
| dc.language.iso | en | |
| dc.subject | 鼻咽癌發生 | zh_TW |
| dc.subject | EB病毒BALF3 | zh_TW |
| dc.subject | DNA包裝 | zh_TW |
| dc.subject | DNA切割 | zh_TW |
| dc.subject | DNA合成 | zh_TW |
| dc.subject | 末端? | zh_TW |
| dc.subject | 基因不穩定性 | zh_TW |
| dc.subject | Epstein-Barr virus BALF3 | en |
| dc.subject | nasopharyngeal carcinogenesis | en |
| dc.subject | genomic instability | en |
| dc.subject | DNA packaging | en |
| dc.subject | DNA cleavage | en |
| dc.subject | DNA synthesis | en |
| dc.subject | terminase | en |
| dc.title | EB病毒BALF3於病毒生活史與鼻咽癌發生之角色探討 | zh_TW |
| dc.title | Roles of Epstein-Barr Virus BALF3 in Viral Life Cycle and Nasopharyngeal Carcinogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 董馨蓮(Shin-Lian Doong),陳美如(Mei-Ru Chen),林素芳(Su-Fang Lin),李財坤(Tsai-Kun Li) | |
| dc.subject.keyword | EB病毒BALF3,末端?,DNA合成,DNA切割,DNA包裝,基因不穩定性,鼻咽癌發生, | zh_TW |
| dc.subject.keyword | Epstein-Barr virus BALF3,terminase,DNA synthesis,DNA cleavage,DNA packaging,genomic instability,nasopharyngeal carcinogenesis, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
