請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 龔源成(Yuancheng Gung) | |
dc.contributor.author | Shuei-Huei You | en |
dc.contributor.author | 尤水輝 | zh_TW |
dc.date.accessioned | 2021-06-16T06:53:19Z | - |
dc.date.available | 2017-07-29 | |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-21 | |
dc.identifier.citation | Ando, M., Y. Ishikawa, F. Yamazaki (1983), Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 88, 5850-5864.
Balfour, N. J., J. F. Cassidy, and S. E Dosso (2012), Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia. Geophys. J. Int., 188, 165-176, doi: 10.1111/j.1365-246X.2011.05231.x Bartel, B. A., M. W. Hambuger, C. M. Meertens, A. R. Lowry, and E. Corpuz (2003), Dynamics of active magmatic and hydrothermal systems at Taal Volcano, Philippines, from continuous GPS measurements. J. Geophys. Res.,108(B10), 2475, doi: 10.1029/2002JB002194. Bensen, G.D, M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 169, 1239-1260, doi: 10.1111/j. 1365-246X.2007.03374.x. Bischke, R. E., J. Suppe, and R. del Pilar (1990), A new branch of the Philippine fault system as observed from aeromagnetic and seismic data. Tectonophysics, 183, 243-264. Boness, N., and M. Zoback (2004), Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA. Geophys. Res. Lett., 31, L15-L17, doi: 10.1029/2003GL019020. Boness, N., and M. Zoback (2006), A multiscale study study of the mechanism controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics, 71, F131-F146, doi: 10.1191/1.2231107. Brenguier, F., M. Campillo, C. Hadziioannou, N. M. Shapiro, R. M. Nadeau, and E. Larose (2008a), Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science 321, 1479-1481, doi: 10.1126/ science.1160943. Brenguier, F., N. M. Shapiro, M. Campillo, A. Nercessian, and V. Ferrazzini (2008b), 3-D surface wave tomography of the Piton de la Fournaise Volcano using seismic noise correlations. Geophys. Res. Lett. 34, L02305, doi: 10.1029/2006GL028586. Bryan, C. J., and S. Sherburn (1999), Seismicity associated with the 1995-1996 eruptions of Ruapehu volcano, New Zealand: narrative and insights into physical process. J. Volcanol, Geotherm. Res., 90, 1-18, doi: 10.1016/S0377-0273(99)00016-5. Catane SG, Taniguchi H, Goto A, Givero AP, Mandanas AA (2005), Explosive volcanism in the Philippines. CNEAS Monograph Series 18, Tohoku University Press, 54–64. Chen, Y.-N., Y. Gung, S.-H. You, S.-H. Hung, L.-Y. Chiao, T.-Y. Huang, Y.-L. Chen, W.-T. Liang, and S. Jan (2011), Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM. Geophys. Res. Lett., 38, L04305, doi: 10.1029/2010GL046290. Chouet, B. A. (1996), Long-period volcano seismicity: its source and use in eruption forecasting. Nature, 380, 309-316. Crampin, S. (1978), Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic. Geophys. J. R. Astron. Soc., 53, 467-496. Fikos, I., G. Vargemezis, J. Zlotnicki, J. R. Puertollano, P. B. Alanis, R. C. Pigtain, E. U. Villacorte, G. A. Malipot, and Y. Sasai (2012), Electric resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull. Volcanol., 74, 1821-1831, doi:10.1007/s00445-012-0638-5. Gerst A., and M. Savage (2004). Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool. Science, 306, 1543-1547, doi: 10.1126/science.1103445. Harada, M., J. Sabit, Y. Sasai, P. K. B. Alanis, J. M. Jr. Cordon, E. G. Corpuz, J. Zlotnicki, T. Nagao, and J. T. Punongbayan (2005), Magnetic and electric field monitoring at Taal Volcano, part I: Magnetic measurements. Proc Jpn Acad, 81(B), 261-266. Hamburger, M. W., R. K. Cardwell, and B. L. Isacks (1983), Seismotectonics of the Northern Philippine Island Arc. In Hayes, D. E., Eds., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Am. Geophys. Union Geophys. Monogr. 27, 1-22. Harlow, D. H., J. A., Laguerta Power, E.P. Laguerta, G. Ambubuyog, R. A. White, and R. P. Hoblitt (2006), Precursory seismicity and forecasting of the June 15, 1991, eruption of Mount Pinatubo. In Punongbayan, R. S., and C. G. Newhall, Eds., Fire and mud eruptions and lahars of Mount Pinatubo, Philippine, 285-305. University of Washington Press, Seattle. Huang, B.-S., W.-G. Huang, W.-T. Liang, R.-J. Rau, and N. Hirata (2006), Anisotropy beneath an active collision orogen of Taiwan: Results from across island array observations. Geophys. Res. Lett., 33, L24302, doi:10.1029/2006GL027884. Huang, T.-Y., Y. Gung, W.-T. Liang, L.-Y. Chiao, and L. S. Teng, (2012), Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies. Geophys. Res. Lett., 39, L05305, doi:10.1029/2011GL050727. Jaxybulatov, K., I. Koulakov, M. I.-v. Seht, K. Klinge, C. Reichert, B. Dahren, and V. R. Troll (2011), Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. J. Volcanol, Geotherm. Res., 206, 96-105, doi:10.1016/j.jvolgeores.2011.06.009. Jones, J.P., C. H. Thurber, and W.J. Lutter (2001), High precision location of pre eruption seismicity at Mount Pinatubo, Philippines, 30 May–3 June. 1991. Phys. Earth Planet. Inter., 123, 221–232, doi:10.1016/s0031-0201(00)00211-9. Kennett, B. L. N., and E. R. Engdahl (1995), Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int., 122, 108-124, doi:10.1111/j.1365-246X.1995.tb03540.x Kissling, E., W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer (1994), Initial reference models in local earthquake tomography. J. Geophys. Res., 99, 19635 – 19646. Kissling, E. (1995), VELEST USER’S GUIDE. International report Institute of Geophysics, ETH Zurich, 26 pp. Kisslinger, C., and E. R. Engdahl (1973), The Interpretation of the Wadati Diagram with Relaxed Assumption. Bull. Seismol. Soc. Am., 63, 1723-1736. Knittel, U., and D. Oles (1995), Basaltic volcanism associated with extensional tectonics in the Taiwan-Luzon island arc: Evidence for non-depleted sources and subduction zone enrichment. In Smellie, J. L., Eds, Volcanism Associated with Extension at Consuming Plate Margins. Geol. Soc. London, Spec. Publ., 81, 77-93 Koulakov, Ivan (2009), LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seismol. Soc. Am., 99, 194-214, doi:10.1785/0120080013 Koulakov, I., and S. V. Sobolev, (2006) A Tomographic Image of Indian Lithosphere Break-off beneath the Pamir-Hindukush Region, Geophys. J. Int., 164, 425-440, doi:10.1111/j.1365-246X.2005.02841.x. Koulakov, I., and S. V. Sobolev, and G. Asch (2006), P- and S-velocity images of the lithosphere-asthenosphere system system in the Central Andes from local-source tomographic inversion. Geophys. J. Int., 167, 106-126, doi:10.1111/j.1365-246X.2006.02949.x. Koulakov, I., M. Bohm, G. Asch, B.-G. Lu‥hr, A. Manzanares, K. S. Brotopuspito, P. Fauzi, M. A. Purbawinata, N. T. Puspito, A. Ratdomopurbo, H. Kopp, W. Rabbel, and E. Shevkunova (2007), P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. J. Geophys. Res., 112, B08310, doi:10.1029/2006JB004712. Koulakov, I., T. Yudistira, B.-G. Luehr, and Wandono (2009), P, S velocity and Vp/Vs ratio beneath the Toba caldera complex (Northern Sumatra) from local earthquake tomography. Geophys. J. Int., 177, 1121-1139. doi:10.1111/j.1365-246X.2009.04114.x Koulakov, I., E. I. Gordeev, N. L. Dobretsov, V. A. Vernikovsky, S. Senyukov, and A. Jakovlev (2011), Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophys. Res. Lett., 38, L09305, doi:10.1029/2011GL046957. Koulakov, I., E. I. Gordeev, N. L. Dobretsov, V. A. Vernikovsky, S. Senyukov, A. Jakovlev, and K. Jaxybulatov (2013), Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J. Volcanol, Geotherm. Res., 263, 75-91, doi:10.1016/j.jvolgeores.2012.10.014. Konstantinou, K. I., C.-H. Lin, W.-T. Liang (2007), Seismicity characteristics of a potentially active Quaternary volcano: The Tatun Volcano Group, northern Taiwan. J. Volcanol, Geotherm. Res., 160, 300-318, doi:10.1016/j.jvolgeores. 2006.09.009. Konstantinou, K. I., C. P. Evangelidis, W.-T. Liang, N. S. Melis, and I. Kalogeras (2013), Seismicity, Vp/Vs and shear wave anisotropy variations during the 2011 unrest at Santorini caldera, southern Aegean. J. Volcanol, Geotherm. Res., 267, 57-67, doi:10.1016/j.jvolgeores.2013.10.001. Kumagai, H., B. A. Chouet, and M. Nakano (2002), Temporal evolution of a hydrothermal system in Kusatsu-Shirane Volcano, Japan, inferred from the complex frequencies of long-period events. J. Geophys. Res., 107(B10), 2236, doi:10.1029/2001JB000653. Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration. Open File Rep, U.S. Geol. Suvery, 28 pp. Lee, W. H. K., and J. C. Lahr (1972), HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. U.S. Geol. Suvery Open File Rep., 100 pp. Lees, J. M. (2007), Seismic tomography of magmatic systems. J. Volcanol. Geotherm. Res., 167, 37-56, doi:10.1016/j.jvolgeores.2007.06.008. Lin, C. H., K. I. Konstantinou, W. T. Liang, H. C. Pu, Y. M. Lin, S. H. You, and Y. P. Huang (2005), Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophys. Res. Lett., 32, L10313, doi:10.1029/2005GL022861. Listanco, E. (1994), Space-time patterns in the geologic and magmatic evolution of caldera: a case study at Taal Volcano, Philippines, Ph.D. thesis, Tokyo University, Tokyo, Japan. Liu, Y., H. Zhang, C. Thurber, and S. Roecker (2008), Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis. Geophys. J. Int., 172, 957-970, doi: 10.1111/j.1365-246X.2007.03618.x Lucente, F. P., P. D. Gori, L. Margheriti L., D. Piccinini D., Bona M. D., Chiarabba C., and Piana Agostinetti N. (2010). Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L’Aquila earthquake, Italy. Geology, 38, 1015-1018, doi:10.1130/G31463.1 Lukac, M., P. Davis, R. Claytion, and D. Estrin (2009), Recovering temporal integrity with Data Driven Time Synchronization. Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, 00, 61-72. McNutt, S. R. (1996), Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa, R., and R. I. Tilling, Eds., Monitoring and Mitigation of Volcanic Hazards, Springer-Verlag, Berlin, 99-146. McNutt, S. R. (2005), Volcanic Seismology. Annu. Rev. Earth Planet. Sci., 32, 461-491, doi:10.1146/annurev.earth.33.092203.122459. Moose, J. G., K. Nakamura, and A. Alcaraz (1966), The 1965 eruption of Taal Volcano. Science, 151, 955-960. Nishigami, K., T. Shibutani, T. Ohkura, M. Hirata, H. Horikawa, K. Shimizu, S. Matsuo, S. Nakao, M. Ando, B. C. Bautista, L. P. Bautista, E. S. Barcelona, R. Valerio, A. G. Lanuza, A. V. Chu, J. J. Villegas, A. R. Rasdas, E. A. Mangao, E. Gabinete, and B. J. Punongbayan (1994). Shalow crustal structure beneath Taal Volcano, Philippines, revealed by the 1993 seismic explosion survey, Bull. Disaster Prev. Res. Inst. Kyoto Univ, 44, 123-138. Nishimura, T., S. Ueki, T. Yamawaki, S. Tanaka, H. Hashino, M. Sato, H. Nakamichi, H. Hamaguchi (2002), Broadband seismic signals associated with the 2000 volcanic unrest of Mount Bandai, northeastern Japan. J. Volcanol. Geotherm. Res., 119, 51-59. Nishizawa, O., and K. Kanagawa (2010), Seismic velocity anisotropy of phyllosilicate-rich rocks: characteristics inferred from experimental and crack-model studies of biotite-rich schist. Geophys. J. Int., 182, 375-388, doi: 10.1111/j.1365-246X.2010.04614.x. Pavlis, G. L., and J. R. Booker (1983), A study of the importance on nonlinearity in the inversion of earthquake arrival time data for velocity structures. J. Geophys. Res., 88, 5047-5055. Pedersen, H. A., F. Kruger, and the SVEKALAPKO Seismic Tomography Work Group, Influence of the seismic noise characteristics on noise correlation functions in the Baltic shield. Geophys. J. Int., 168, 197-210, doi:10.1111/j.1365-246X.2006.03177.x. Pietruszczak, S., D. Lydzba, and J.F. Shao (2002), Modelling of inherent anisotropy in sedimentary rocks. Int. J. Solids. Struct., 39, pp. 637-648, doi: 10.1016/S0020-7683(01)00110-X. Savage, M. K., T. Ohminato, Y. Aoki, H. Tsuji, and S. M. Greve (2010), Stress magnitude and its temporal variation at Mt. Asama Volcano, Japan, from seismic anisotropy and GPS. Earth planet. Sci. Lett., 290, 403-414, doi: 10.1016/j.epsl.2009.12.037. Shapiro, N. M., and M. Campillo (2004), Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31, L07614, doi: 10.1029/2004GL019491. Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005), High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615-1618, doi: 10.1126/science.1108339. Sherburn, S., B. J. Scott, Y. Nishi, and M. Sugihara (1998), Seismicity at White Island volcano, New Zealand: a revised classification and inferences about source mechanism. J. Volcanol. Geotherm. Res., 83, 287-312. Snieder, R. (2004), Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E, 69, 046610, doi: 10.1103/PhysRevE.69.046610. Stehly, L., M. Campillo, and N. M. Shapiro (2006), A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., 111, B10306, doi:10.1029/2005JB004237. Stehly, L., M. Campillo, and N. M. Shapiro (2007), Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophys. J. Int., 171, 223–230, doi:10.1111/j.1365-246X.2007.03492.x. Tanaka, S., H. Hamaguchi, S. Ueki, M. Sato, and H. Nakamichi (2002), Migration of seismic activity during the 1998 volcanic unrest at Iwate volcano, northeastern Japan, with reference to P and S wave velocity anomaly and crustal deformation, J. Volcanol. Geotherm. Res., 113, 399-414, doi: 10.1016/S0377-0273(01)00273-6. Thurber, C.H. (1985), Nonlinear earthquake location: Theory and examples. Bull. Seismol. Soc. Am., 75, 779-790. Thurber, C. H. (1992), hypocenter-velocity structure coupling in local earthquake tomography. Phys. Earth Planet. Inter., 75, 52-62. Torres, R. C., S. Self, and R. S. Punongbayan (1995), Attention Focuses on Taal: Decade Volcano of the Philippines. EOS Trans. Am. Geophys. Un., 76, 241-247. Um, J., and C. H. Thurber (1987), A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 77, 972-986. Villasenor, A., Y. Yang, M. H. Ritzwoller, and J. Gallart (2007), Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure. Geophys. Res. Lett., 34, L11304, doi:10.1029/2007GL030164. Weaver, R. L., and O. I. Lobkis (2001), Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies, Phys. Rev. Lett., 87, No. 13, 134301, doi:10.1103/PhysRevLett.87.134301. Weaver, R. L., and O. Lobkis (2002), On the emergence of the Green’s function in the correlations of a diffuse field: pulse-echo using thermal phonons, Ultrasonics, 40, 435-439, doi:10.1016/S0041-624X(02)00156-7. Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac (2007), Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. J. Geophys. Res., 112, B08312, doi:10.1029/2007JB004983. Yamawaki, T., S. Tanaka, S. Ueki, H. Hamaguchi, H. Nakamichi, T. Nishimura, J. Oikawa, T. Tsutsui, K. Nichi, H. Shimizu, S. Yamaguchi, H. Miyamachi, H. Yamasato, and Y. Hayashi (2004), Three-dimensional P-wave velocity structure of Bandai volcano in northeastern Japan inferred from active seismic survey. J. Volcanol. Geotherm. Res., 138, 267-282, doi:10.1016/j.jvolgeores.2004.07.010. Yamaya, Y., P. K. B. Alanis, A. Takeuchi, J. M. Cordon Jr., T. Mogi, T. Hashimoto, Y. Sasai, and T. Nagao (2013), A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling. Bull. Volcanol., 75, 729, doi:10.1007/s00445-013-0729-y. Yang, Y., and M. H. Ritzwoller (2008), Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst., 9, Q02008, doi:10.1029/2007GC001814. Yang, Y., M. H. Ritzwoller, A. L. Levshin, and N. M. Shapiro (2007), Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int., 168, 259-274, doi:10.1111/j.1365-246X.2006.03203.x. You, S.-H., Y. Gung, L.-Y. Chiao, Y.-N. Chen, C.-H. Lin, W.-T. Liang, and Y.-L. Chen (2010), Multi-scale Ambient Noise Tomography of Short Period Rayleigh Waves across Northern Taiwan. Bull. Seismol. Soc. Am., 100, 3165–3173, doi:10.1785/0120090394. Zlotnicki, J., Y. Sasai, J. P. Toutain, E. U. Villacorte, A. Bernard, P. S. Julio, J. M. Gordon Jr., E. G. Corpuz, M. Harada, J. T. Punongbayan, H. Hase, T. Nagao (2009), Combined electromagnetic geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005-2006. Bull. Volcanol., 71, 29-47. doi:10.1007/s00445-008-0205-2.o | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57597 | - |
dc.description.abstract | 菲律賓塔阿火山位於呂宋島上,馬尼拉市南方60公里處。塔阿火山是座非常活躍的活火山,基於它頻繁爆發的歷史,以及對於鄰近地區數百萬人口的高潛在危害度,塔阿火山被選為世界上15座最危險的火山之一。在2008年三月,我們在塔阿火山區域設置了一個由8個短周期地震觀測站所組成的臨時性地震觀測網,從2008年三月運行到2010年三月,記錄了超過2270個地震事件。在初期資料處理階段,我們利用周遭噪訊交互相關運算法,發現許多測站所記錄的資料具有線性偏移的誤差,並使用線性回歸方法修正所有地震事件的波相到時。地震的波相到時是經由仔細地人工挑選,並使用定位程式HYPO71,利用全球一維速度構造模型AK135測定初始的震源位置。之後我們挑選定位良好的地震,使用程式VELEST進行塔阿火山地區一維速度模型的反衍運算,並利用所得到的一維速度模型,改善地震事件的定位結果,並發現兩個地震群。一個地震群位於塔阿湖西岸呈現線性分佈的特性,另外一個地震群散佈於塔阿火山島東側,深度較淺的位置。之後我們利用改善之後地震定位結果,使用程式LOTOS進行三維速度模型的層析成像反衍計算,從反衍結果中我們發現幾個有趣的構造:在塔阿火山島的西北角,我們發現一個具有高速P波、高速S波,以及低P波-S波波速比值的構造,暗示了一個已經固化的舊有岩漿通道。而在塔阿火山島中央位置,我們發現一個低速S波以及高P波-S波波速比值的構造,可能代表一個大型的熱液儲存庫。另外我們在塔阿湖的西南角,發現一個具有低速P波、低速S波,以及高的P波-S波波值的構造,結合塔阿火山湖西側線性分佈的地震群,我們推測在塔阿火山湖西南角地底下可能存在著一個岩漿庫,並有一條岩漿通道從此處延伸到塔阿湖西北岸,如此的火山構造暗示著未來在遠離塔阿火山島上的歷史火山口的地區,可能會有新的火山口伴隨著岩漿噴出而形成。最後,我們量測地震剪力波分離的現象,藉以研究塔阿火山區域地殼中的方位非均向性,經過嚴格地篩選,我們得到40個有效的剪力波分離的量測結果,其結果顯示塔阿火山島底下的地殼方位非均向性相當複雜,可能反映著由島上眾多的歷史火山噴發口,以及反覆的岩漿入侵造成的地殼膨脹現象所形成的複雜應力非均向性,或是複雜的構造非均向性。 | zh_TW |
dc.description.abstract | The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous “Decade Volcanoes” in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the northwestern shore of Taal Lake. Such magmatic signatures have never been reported in previous studies, suggesting that new eruption centers might be forming in places away from the historical craters on Taal Volcano Island. Finally, to investigate the anisotropy beneath Taal Volcano, we conducted shear wave splitting measurements using data from local earthquakes. With strict selection criteria, 40 valid measurements are remained. The resulting patterns of azimuthal anisotropy are difficult to interpret, and such complexity might be attributed to complex stress-induced anisotropy caused by numerous past eruptions and inflating behaviors induced by episodic intrusion of magma into a shallow reservoir, or complex structural anisotropy caused by crustal media with complicated patterns of prominent structures such as layers, parallel fractures, or lineated fabrics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:53:19Z (GMT). No. of bitstreams: 1 ntu-103-D97224002-1.pdf: 4460112 bytes, checksum: f3ff0f810b345fe96e0b99a75497817a (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………i
誌謝………………………………………………………………………………ii 中文摘要…………………………………………………………………………iii Abstract…………………………………………………………………………iv Table of Contents………………………………………………………………vi List of Figures……………………………………………………………………viii List of Tables……………………………………………………………………x Chapter 1 Introdution……………………………………………………………1 Chapter 2 Temporary seismic network…………………………………………8 Chapter 3 Ambient noise analysis and timing-error detection and correction………………15 3.1 Introduction………………………………………………………………... 15 3.2 Data processing of ambient noise analysis………………………………... 17 3.3 Linear drifting of CCFs………………...…………………………………. 17 3.4 Time-drifting correction…………………………………………………... 19 3.5 Conclusion………………………………………………………………… 20 Chapter 4 Minimum 1-D velocity model and local seismicity…………………30 4.1 Introduction………………………………………………………………30 4.2 Concept of VELEST………………………………………………………31 4.3 Preliminary seismic locations and data selection…………………………33 4.4 Model determination and test of model layering……………………34 4.5 Spatial and temporal distribution of earthquakes………………36 4.6 Conclusion…………………………………………………………38 Chapter 5 3D local earthquake tomography…………………………………54 5.1 Introduction………………………………………………………………54 5.2 Concepts of LOTOS……………………………………………………55 5.3 Checkerboard test…………………………………………………………57 5.4 Result and discussion………………………………………………………58 5.5 Conclusion………………………………………………………………… 60 Chapter 6 Shear wave splitting measurements…………………………………70 6.1 Introduction………………………………………………………………70 6.2 Analysis method and data processing procedure………………………71 6.3 Result and discussion………………………………………………………73 6.4 Conclusion………………………………………………………………74 Summary…………………………………………………………………………84 Reference…………………………………………………………………………86 | |
dc.language.iso | en | |
dc.title | 菲律賓塔阿火山地區之地震構造 | zh_TW |
dc.title | Seismic Structure beneath Taal Volcano, Philippines | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 柯士達(Konstantinos I. Konstantinou),林正洪(Cheng-Horng Lin),洪淑蕙(Shu-Huei Hung),梁文宗(Wen-Tzong Liang) | |
dc.subject.keyword | 塔阿火山,一維速度構造,三維速度層析成像,剪力波分離, | zh_TW |
dc.subject.keyword | Taal Volcano,minimum 1D velocity model,3D tomography,shear wave splitting, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-21 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。