請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57594完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮世邁(See-May Phoong) | |
| dc.contributor.author | Chih-Fan Pai | en |
| dc.contributor.author | 白植帆 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:53:10Z | - |
| dc.date.available | 2020-08-04 | |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-21 | |
| dc.identifier.citation | [1] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, 2011. [2] R. Nissel, S. Schwarz, and M. Rupp, “Filter bank multicarrier modulation schemes for future mobile communications,” IEEE J. Sel. Areas Commun., vol. 35, no. 8, pp. 1768–1782, 2017. [3] J. Kim, Y. Park, S. Weon, J. Jeong, S. Choi, and D. Hong, “A new filterbank multicarrier system: The linearly processed FBMC system,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4888–4898, 2018. [4] J. Nadal, C. A. Nour, and A. Baghdadi, “Design and evaluation of a novel short prototype filter for FBMC/OQAM modulation,” IEEE Access, vol. 6, pp.19 610–19 625, 2018. [5] P. P. Vaidyanathan, Multirate systems and filter banks. Pearson Education India, 2006. [6] Y.-P. Lin, S.-M. Phoong, and P. Vaidyanathan, Filter bank transceivers for OFDM and DMT systems. Cambridge University Press, 2010. [7] P. Vaidyanathan and T. Nguyen, “Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters,” IEEE Trans. Circuits Syst., vol. 34, no. 1, pp. 11–23, 1987. [8] S. J. Maeng and B. G. Lee, “A design of linear-phased IIR Nyquist filters,” IEEE J. Sel. Areas Commun., vol. 13, no. 1, pp. 167–175, 1995. [9] A. Tkacenko, P. Vaidyanathan, and T. Q. Nguyen, “On the eigenfilter design method and its applications: a tutorial,” IEEE Trans. Circuits Syst. II, vol. 50, no. 9, pp. 497–517, 2003. [10] P. Boonyanant and S. Tantaratana, “Design and hybrid realization of FIR Nyquist filters with quantized coefficients and low sensitivity to timing jitter,” IEEE Trans. Signal Process., vol. 53, no. 1, pp. 208–221, 2004. [11] H. Johansson and A. Eghbali, “Add-equalize structures for linear-phase Nyquist FIR filter interpolators and decimators,” IEEE Trans. Circuits Syst. I, vol. 61, no. 6, pp. 1766–1777, 2014. [12] S. Traverso, “A family of square-root Nyquist filter with low group delay and high stopband attenuation,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1136–1139, 2016. [13] P. P. Vaidyanathan and B. Vrcelj, “Biorthogonal partners and applications,” IEEE Trans. Signal Process., vol. 49, no. 5, pp. 1013–1027, 2001. [14] A. N. Akansu, P. A. Haddad, R. A. Haddad, and P. R. Haddad, Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic press, 2001. [15] M. Vetterli and J. Kovacevic, Wavelets and subband coding. Prentice-hall, 1995, no. BOOK. [16] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing. i. theory,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821–833, 1993. [17] M. Unser, “Sampling-50 years after Shannon,” Proc. IEEE, vol. 88, no. 4, pp. 569–587, 2000. [18] J. R. Treichler, I. Fijalkow, and C. Johnson, “Fractionally spaced equalizers,” IEEE Signal Process. Mag., vol. 13, no. 3, pp. 65–81, 1996. [19] B. Vrcelj and P. Vaidyanathan, “MIMO biorthogonal partners and applications,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 528–542, 2002. [20] M. Visintin, “Karhunen-Loeve expansion of a fast Rayleigh fading process,” Electronics Letters, vol. 32, no. 18, pp. 1712–1713, 1996. [21] K. A. D. Teo and S. Ohno, “Optimal MMSE finite parameter model for doubly-selective channels,” in GLOBECOM’05. IEEE Global Telecommunications Conference, 2005., vol. 6. IEEE, 2005, pp. 5–pp. [22] T. Zemen and C. F. Mecklenbrauker, “Time-variant channel estimation using discrete prolate spheroidal sequences,” IEEE Trans. Signal Process., vol. 53, no. 9, pp. 3597–3607, 2005. [23] M. K. Tsatsanis and G. B. Giannakis, “Modelling and equalization of rapidly fading channels,” International journal of adaptive control and signal processing, vol. 10, no. 2-3, pp. 159–176, 1996. [24] G. Leus, “On the estimation of rapidly time-varying channels,” in 2004 12th European Signal Processing Conference. IEEE, 2004, pp. 2227–2230. [25] D. K. Borah and B. Hart, “Frequency-selective fading channel estimation with a polynomial time-varying channel model,” IEEE Trans. Commun., vol. 47, no. 6, pp. 862–873, 1999. [26] S. Tomasin, A. Gorokhov, H. Yang, and J.-P. Linnartz, “Iterative interference cancellation and channel estimation for mobile OFDM,” IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 238–245, 2005. [27] A. Gorokhov and J.-P. Linnartz, “Robust OFDM receivers for dispersive time-varying channels: Equalization and channel acquisition,” IEEE Trans. Commun., vol. 52, no. 4, pp. 572–583, 2004. [28] A. Stamoulis, S. N. Diggavi, and N. Al-Dhahir, “Intercarrier interference in MIMO OFDM,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2451–2464, 2002. [29] M. Nicoli, O. Simeone, and U. Spagnolini, “Multislot estimation of frequency selective fast-varying channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1337–1347, 2003. [30] E. Panayirci, H. Senol, and H. V. Poor, “Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4225–4238, 2010. [31] H. Senol, E. Panayirci, and H. V. Poor, “Nondata-aided joint channel estimation and equalization for OFDM systems in very rapidly varying mobile channels,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4236–4253, 2012. [32] H. A. Cirpan and M. K. Tsatsanis, “Maximum likelihood blind channel estimation in the presence of Doppler shifts,” IEEE Trans. Signal Process., vol. 47, no. 6, pp. 1559–1569, 1999. [33] M. Guillaud and D. T. Slock, “Channel modeling and associated inter-carrier interference equalization for OFDM systems with high Doppler spread,” in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., vol. 4. IEEE, 2003, pp. IV–237. [34] X. Ma, G. B. Giannakis, and S. Ohno, “Optimal training for block transmissions over doubly selective wireless fading channels,” IEEE Trans. Signal Process., vol. 51, no. 5, pp. 1351–1366, 2003. [35] G. B. Giannakis and C. Tepedelenlioglu, “Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels,” Proceedings of the IEEE, vol. 86, no. 10, pp. 1969–1986, 1998. [36] G. Leus and M. Moonen, “Deterministic subspace based blind channel estimation for doubly-selective channels,” in 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications-SPAWC 2003 (IEEE Cat. No. 03EX689). IEEE, 2003, pp. 210–214. [37] A. Kannu and P. Schniter, “MSE-optimal training for linear time-varying channels,” in Proceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., vol. 3. IEEE, 2005, pp. iii–789. [38] T. Ebihara and G. Leus, “Doppler-resilient orthogonal signal-division multiplexing for underwater acoustic communication,” IEEE J. Ocean. Eng., vol. 41, no. 2, pp. 408–427, 2015. [39] J. Han, L. Zhang, Q. Zhang, and G. Leus, “Low-complexity equalization of orthogonal signal-division multiplexing in doubly-selective channels,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 915–929, 2018. [40] J.-P. Linnartz and A. Gorokhov, “New equalization approach for OFDM over dispersive and rapidly time varying channel,” in 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No. 00TH8525), vol. 2. IEEE, 2000, pp. 1375–1379. [41] P. Schniter, “Low-complexity equalization of OFDM in doubly selective channels,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1002–1011, 2004. [42] T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger, “Low complexity equalization for doubly selective channels modeled by a basis expansion,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5706–5719, 2010. [43] S. He, J. K. Tugnait, and X. Meng, “On superimposed training for MIMO channel estimation and symbol detection,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 3007–3021, 2007. [44] S. He and J. K. Tugnait, “On doubly selective channel estimation using superimposed training and discrete prolate spheroidal sequences,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3214–3228, 2008. [45] J. K. Tugnait and S. He, “Multiuser/MIMO doubly selective fading channel estimation using superimposed training and Slepian sequences,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1341–1354, 2009. [46] Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, “Pilot-assisted time-varying channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2226–2238, 2007. [47] H. Nguyen-Le and T. Le-Ngoc, “Pilot-aided joint CFO and doubly-selective channel estimation for OFDM transmissions,” IEEE Trans. Broadcast., vol. 56, no. 4, pp. 514–522, 2010. [48] P. Cheng, Z. Chen, Y. Rui, Y. J. Guo, L. Gui, M. Tao, and Q. Zhang, “Channel estimation for OFDM systems over doubly selective channels: A distributed compressive sensing based approach,” IEEE Trans. Commun., vol. 61, no. 10, pp. 4173–4185, 2013. [49] Q. Qin, L. Gui, B. Gong, X. Ren, and W. Chen, “Structured distributed compressive channel estimation over doubly selective channels,” IEEE Trans. Broadcast., vol. 62, no. 3, pp. 521–531, 2016. [50] F. Rottenberg, X. Mestre, F. Horlin, and J. Louveaux, “Efficient equalization of time-varying channels in MIMO OFDM systems,” IEEE Trans. Signal Process., vol. 67, no. 21, pp. 5583–5595, 2019. [51] C.-F. Pai, T.-C. Hung, and S.-M. Phoong, “Depth-L Nyquist (M) filters and biorthogonal partners,” IEEE Access, vol. 8, pp. 75 512–75 522, 2020. [52] Y.-P. Lin and S.-M. Phoong, “Smith form of FIR pseudocirculants,” IEEE Signal Process. Lett., vol. 9, no. 8, pp. 256–258, 2002. [53] X.-G. Xia, “New precoding for intersymbol interference cancellation using nonmaximally decimated multirate filterbanks with ideal FIR equalizers,” IEEE Trans. Signal Process., vol. 45, no. 10, pp. 2431–2441, 1997. [54] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012. [55] S.-M. Phoong, Y. Chang, and C.-Y. Chen, “DFT-modulated filterbank transceivers for multipath fading channels,” IEEE Trans. Signal Process., vol. 53, no. 1, pp. 182–192, 2004. [56] T.-D. Chiueh, P.-Y. Tsai, L. I-Wei, and T.-D. Chiueh, Baseband receiver design for wireless MIMO-OFDM communications. Wiley Online Library, 2012. [57] P. Dent, G. E. Bottomley, and T. Croft, “Jakes fading model revisited,” Electronics letters, vol. 29, no. 13, pp. 1162–1163, 1993. [58] X. Cai and G. B. Giannakis, “Bounding performance and suppressing intercarrier interference in wireless mobile OFDM,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2047–2056, 2003. [59] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The Johns Hopkins University Press, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57594 | - |
| dc.description.abstract | 此篇論文包含兩個部分,探討了兩個在多載波通訊系統中遇到的問題。在第一個部分,我們提出一種新類別的濾波器,並探討如何將之應用於多載波通訊系統,在多重路徑通道干擾下達成零符元干擾的通訊。此種新型提出的濾波器是奈奎斯特濾波器的延伸。在第二個部分,我們聚焦於正交分頻多工系統的時變通道估測問題。 在過去,奈奎斯特濾波器已經被許多研究者探討過。當一組濾波器串聯時成為一個奈奎斯特濾波器,我們稱它們為一組正交對濾波器。傳統正交對濾波器已經被廣泛探討過。在此篇論文的第一個部分,我們將奈奎斯特濾波器及正交對濾波器,分別推廣延伸至具深度奈奎斯特濾波器及具深度正交對濾波器。我們推導出有限脈衝響應具深度正交對濾波器存在的充分必要條件。我們發現這個充分必要條件與最大的一致零點集合的基數有關。藉由特徵濾波器方法,我們也提出了具深度奈奎斯特濾波器及具深度正交對濾波器的設計方法。另外,我們探討了具深度正交對濾波器的兩種應用。第一個應用是在部分間隔等化器,第二個是在濾波器組多載波系統。最後,我們進行了表現比較以展示具深度正交對濾波器的優勢。結果顯示,具深度版本的濾波器在對抗符元干擾及時間同步誤差時,具有比傳統版本濾波器更好的穩健性。 在許多無線通訊系統中,傳送通道除了具有頻率選擇性也具有時間選擇性。在過去,我們採用正交分頻多工系統解決了通道頻率選擇性的問題。然而,當通道同時具有頻率和時間選擇性時,正交分頻多工系統中子載波的正交性會被破壞並造成子載波之間的互相干擾。隨著都卜勒效應及通道的時間選擇性越趨嚴重,大家對於時變通道產生更多研究興趣。在此篇論文的第二個部分,我們聚焦於基於基擴展模型的正交分頻多工系統時變通道估測問題。藉由傳送一組訓練序列,我們展示基擴展模型的通道係數可以被分開估測並推導出它們的解析解。之後,我們將此基於訓練序列的方法推廣至領航符碼配置的方法。在領航符碼配置的方法中,除了傳送幫助通道估測的領航符碼外,還能傳送額外資料。我們提出的方法具有相當低的複雜度,並且對於通道長度有很強的穩健性。模擬結果顯示,相比另一個具領導地位的符碼配置方法,此提出的方法具有更好的表現。 | zh_TW |
| dc.description.abstract | In this thesis, we study two separate problems in multicarrier communication systems. Our works include two parts. In the first part, we propose a new class of filters and study their applications for multicarrier systems that can achieve transmission free of inter-symbol interference (ISI) for multipath channels. The proposed new filters are an extension of the class of Nyquist filters. In the second part, we focus on the time-varying (TV) channel estimation in orthogonal frequency division multiplexing (OFDM) systems. In the past, Nyquist filters have been studied by many researchers. A pair of filters are said to be biorthogonal partners of each other if their cascade forms a Nyquist filter. The theory and design of traditional biorthogonal partners have been studied extensively. In the first part of this thesis, we extend these results to depth-L Nyquist filters and biorthogonal partners. A necessary and sufficient condition is derived for the existence of an finite impulse response (FIR) depth-L biorthogonal partner. We find out that the existence depends on the cardinality of the largest so-called congruous-zero set. We also propose the design method for these filters by applying the eigenfilter method. Additionally, two potential applications of depth-L biorthogonal partners are discussed in fractionally spaced equalizer (FSE) and filter bank multicarrier (FBMC) systems. Performance comparisons are carried out to demonstrate the advantage of depth-L biorthogonal partners. It is shown that the depth-L version is more robust against ISI and timing synchronization error compared to the traditional biorthogonal partner. In many wireless communication systems, the transmission channels are not only frequency selective but also time selective. In the past, the issue of frequency selectivity is solved by adopting OFDM. However, when the channels are selective in both time and frequency, the subcarrier orthogonality of an OFDM system is destroyed and this leads to inter-carrier interference (ICI). As the Doppler effect and the resulting time selectivity of transmission channels becomes more severe, there is an increasing interest in the study of TV channels in OFDM systems. In the second part of this thesis, we focus on the study of TV channel estimation in OFDM systems based on basis expansion model (BEM). By transmitting a periodic training sequence, we show that the BEM channel coefficients can be estimated separately and the closed form formula for them is derived. Afterwards, this training sequence method is extended to the pilot-aided method, in which case we are able to transmit some data in addition to pilots for channel estimation. The proposed method enjoys low complexity and robustness against the channel length. Simulation results show that the proposed method compares favorably with a leading work on pilot-based estimation of BEM channels. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:53:10Z (GMT). No. of bitstreams: 1 U0001-2007202012380100.pdf: 1876244 bytes, checksum: 359b78c47a910dad8725c40e86c4f197 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Acknowledgements ix Abstract xi 1 Introduction 1 2 Depth-L Nyquist(M) Filters and Biorthogonal Partners 9 2.1 Review of Nyquist(M) Filters and Biorthogonal Partners . . . . . . . 10 2.2 Depth-L Nyquist(M) Filters and Biorthogonal Partners . . . . . . . . 12 2.3 Existence of an FIR Depth-L Biorthogonal Partner . . . . . . . . . . 13 2.3.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Necessary and Sufficient Condition . . . . . . . . . . . . . . . 16 2.4 Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Design of Depth-L Nyquist(M) Filters . . . . . . . . . . . . . 20 2.4.2 Design of Depth-L Biorthogonal Partners . . . . . . . . . . . . 23 2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Applications of Depth-L Biorthogonal Partners 27 3.1 Application of Depth-L Biorthogonal Partners in FSE . . . . . . . . . 28 3.2 Application of N-pair Depth-L Biorthogonal Partners in FBMC . . . 30 3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2 Under AWGN Channel . . . . . . . . . . . . . . . . . . . . . . 31 3.3.3 Under 3-tap FIR Channel . . . . . . . . . . . . . . . . . . . . 33 3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Time-Varying Channels in OFDM Systems 37 4.1 OFDM Systems with Time-Varying Channels . . . . . . . . . . . . . 38 4.2 BEM Time-Varying Channel Model . . . . . . . . . . . . . . . . . . . 39 4.3 LS Estimation of BEM Channels in OFDM Systems . . . . . . . . . . 40 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Time-Varying Channel Estimation in OFDM Systems 49 5.1 Periodic Training Sequences for Channel Estimation . . . . . . . . . . 50 5.2 Channel Estimation Using Uniformly Spaced Frequency-Domain Pilots 53 5.2.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6 Conclusions 65 A Proof of Theorem 3 67 Bibliography 70 List of Abbreviations 77 | |
| dc.language.iso | en | |
| dc.subject | 奈奎斯特濾波器 | zh_TW |
| dc.subject | 正交對濾波器 | zh_TW |
| dc.subject | 濾波器組多載波系統 | zh_TW |
| dc.subject | 基擴展模型 | zh_TW |
| dc.subject | 部分間隔等化器 | zh_TW |
| dc.subject | 通道估測 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | Nyquist Filter | en |
| dc.subject | Basis Expansion Model (BEM) | en |
| dc.subject | Orthogonal Frequency Division Multiplexing (OFDM) | en |
| dc.subject | Channel Estimation | en |
| dc.subject | Fractionally Spaced Equalizer (FSE) | en |
| dc.subject | Filter Bank Multicarrier (FBMC) | en |
| dc.subject | Biorthogonal Partner | en |
| dc.title | 具深度正交對濾波器及時變通道估測於多載波通訊系統 | zh_TW |
| dc.title | Depth-L Biorthogonal Partners and Time-Varying Channel Estimation in Multicarrier Communication Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-7738-598X | |
| dc.contributor.advisor-orcid | 馮世邁(0000-0002-4108-420X) | |
| dc.contributor.oralexamcommittee | 蘇炫榮(Hsuan-Jung Su),蘇柏青(Borching Su),劉俊麟(Chun-Lin Liu) | |
| dc.contributor.oralexamcommittee-orcid | 蘇炫榮(0000-0002-4902-1393),蘇柏青(0000-0001-8617-2601),劉俊麟(0000-0003-3135-9684) | |
| dc.subject.keyword | 奈奎斯特濾波器,正交對濾波器,濾波器組多載波系統,部分間隔等化器,通道估測,正交分頻多工,基擴展模型, | zh_TW |
| dc.subject.keyword | Nyquist Filter,Biorthogonal Partner,Filter Bank Multicarrier (FBMC),Fractionally Spaced Equalizer (FSE),Channel Estimation,Orthogonal Frequency Division Multiplexing (OFDM),Basis Expansion Model (BEM), | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202001643 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202012380100.pdf 未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
